FOREWORD

At PUMA, we believe that our position as creative leader in the Sports industry gives us the opportunity and the responsibility to contribute to a better world for generations to come. With the Forever Faster transformation, Sustainability remains a key value of the PUMA brand. Faster is how we are working towards a more just and sustainable future, accelerating positive change in the industry and the world. We believe that by staying true to our values, inspiring the passion and talent of our people, working in sustainable, innovative ways, and doing our best to be Fair, Honest, Positive, and Creative, we will keep on making the products our customers love, and at the same time bring our vision of a better world a little closer every day.

We aim to bring our trading practices in line with the principles of sustainable development. This means that we do not just want to provide high-quality products, but it is our duty to ensure that these products are manufactured in workplaces where human rights are respected and workers’ health and safety as well as the environment are protected.

PUMA takes on the responsibility for everybody involved in the production process, whether a PUMA employee or not. However, this responsibility cannot replace nor substitute the responsibility of our Vendors within their own manufacturing facilities. Our “Code of Conduct” expresses the expectations we have of our Vendors. It is integrated into our manufacturing agreement, which delimits the business relationship we share with our partners. PUMA takes this shared responsibility seriously. We reserve the right to terminate business relations with any partner who does not respect the letter or the spirit of our Code of Conduct or Corporate Sustainability Policies.

Only by partnering up with our Vendors we will be able to have a positive impact and contribute to making a better world for the communities we operate in, the workers who make our great products, our customers and our own employees and, of course, for future generations.

Anne-Laure Descours
Chief Sourcing Officer

Michael Bennett
Global Director, SourceCo
FOLLOW
MASTER
THE RULES
TABLE OF CONTENTS

Introduction 7

The PUMA Forever Faster Sustainability Handbooks 7

Sec. 1 – PUMA’s Mission Statement & Sustainability Strategy 8

1.1 PUMA’s Mission Statement 8
1.2 PUMA’s Sustainability Strategy 8
1.3 PUMA’s 10FOR20 Sustainability Targets 8

Sec. 2 – Compliance 9

2.1 Vendor Requirements 9
2.2 Core Supplier Requirements 9
2.3 Monitoring Programs & Audit Instruments 10
2.4 Conflicting Requirements & Conflicts of Interest 10
2.5 Limitations Regarding Antitrust 10
2.6 Anti-Corruption 11
2.7 Factory Training & Capacity Building Projects 11
2.8 New Factory Applications 11

Sec. 3 – PUMA Compliance Audit 12

3.1 Preliminary Briefing 12
3.2 Facility Tour 12
3.3 Document Review 12
3.4 Employee Interviews 13
3.5 Summary Meeting 13
3.6 Corrective Action Plan 14
3.7 Audit Report 14
3.8 Additional Checks for Compliance 14
3.9 The PUMA Audit Rating System 15
3.10 Year-End Grade Guidance 16

Sec. 4 – Issues 17

4.1 Zero Tolerance (“ZT”) Issues 17
4.2 Critical (“CI”) Issues 18
4.3 Major (“MI”) Issues 19
4.4 Regular (“RG”) Issues 20

Sec. 5 – PUMA’s Occupational Health & Safety Policy 21

Sec. 6 – Occupational Health and Safety Management System (“OHS-MS”) 22
6.1 Management System 22
6.2 OHS Committee ("OHSC") 23
6.2.1 Objectives & Functions 23
6.2.2 OHSC Training 23
6.3 Risk Assessment 24
6.3.1 Risk Assessment Process 24
6.3.2 Risk Assessment Chart 25
6.4 Key Performance Indicators on Health & Safety 25

Sec. 7 – Definitions & Calculations of OHS Hazard Risks 26
7.1 Hazard Frequency of Exposure ("FoE") 26
7.2 Severity of Hazard 26
7.3 Risk Evaluation – Calculation 27

Sec. 8 – OHS Hazard Control Measures 27
8.1 Level 1 Control Measures – Eliminate the Hazard 28
8.2 Level 2 Control Measures – Minimize the Hazard 28

Sec. 9 – Incident Investigation & Reporting 28
9.1 PUMA Emergency Reporting Protocol 29
9.2 Incident Investigation 29
9.2.1 Recording Information (Establishing the Circumstances) 30
9.2.2 Determining the Causes of an Incident 30
9.2.3 Taking Appropriate Corrective Action 30
9.2.4 Circulating the Results of the Investigation 31
9.2.5 Training 31

Sec. 10 – Safety Management Policies 32
10.1 General Machinery, Equipment & Tool Safety 32
10.1.1 Machine Guarding 32
10.1.2 Elevators & Lifts 33
10.1.3 Forklifts 34
10.1.4 Electrical Safety 34
10.1.5 Control of Hazardous Energy (Lockout/Tag-Out) 35
10.1.6 Special Work Permits 36
10.2 Chemical Safety Management 37
10.2.1 Chemical Safety Plan 37
10.3 Fire Safety 41
10.3.1 Fire Equipment: Provision & Maintenance 42
10.3.2 Internal Safety Teams 45
10.3.3 Evacuation Drills & Training 45
10.3.4 Layout, Equipment, & Communication 46
10.4 Emergency Preparedness & Response – Natural Disasters 48
10.5 Contractor Safety 48
10.5.1 Risk Assessment 48
10.5.2 Selection 48
10.5.3 Training 48
10.5.4 Contract Stipulations 49
10.6 Walking and Working Surfaces 50
Introduction

RUNNING THE WALK
Taking steps to protect the environment, in accordance with established environmental and social standards, has become an important topic in every industry, as well as in society in general. As a signatory of the United Nations Global Compact, PUMA is committed to setting a brave example for optimizing our social impact and reducing our environmental footprint.

Our comprehensive and ambitious targets to enhance our sustainability are inspired by the United Nations Sustainable Development Goals and encompassed in the PUMA 10FOR20 Sustainability Targets (see Sec. 1.3).

WORKING AS A TEAM
PUMA’s pledge applies to both PUMA entities and Vendors in our supply chain. While we continuously optimize the production process, PUMA also takes measures to mitigate the negative impacts of our supply chain on the global ecosystem.

The PUMA Forever Faster Sustainability Handbooks
PUMA requires all Vendors within our supply chain to fulfill established environmental and social standards. First, all PUMA Vendors must have met all minimum legal requirements. In addition, each must comply with PUMA standards (which may exceed legal requirements) as defined in the four (4) PUMA Forever Faster Sustainability Handbooks: (the “Handbooks”)

- “Social Standards” elaborates upon PUMA’s position on labor rights
- Guidelines for sustainability and environmental protection are contained in “Environmental Standards”
- “Occupational Health & Safety” outlines our standards for and health and safety throughout our supply chain
- Guidelines for Chemicals and Restricted Substances are in “Chemical Management”

These Handbooks are subject to continuous updates. Any feedback or suggestions for improvement is welcome (contact your PUMA Sustainability Team representative or email sustain@puma.com).

GETTING IN THE GAME
PUMA pursues and maintains contractual relationships only with those Factories and Licensees that have agreed to comply with the guidelines and directives set out in the Handbooks.

- All PUMA Factories are contractually bound to pursue business relationships only with Subcontractors that are in compliance with the Handbooks
- Any indication of 1) false documentation or other failures to provide accurate information, or 2) coaching of workers may have serious repercussions on the business relationship with PUMA, e.g. Deactivation

COMMUNICATE, COMMUNICATE, COMMUNICATE
Transparency from all of PUMA’s Vendors is paramount to a successful working relationship. PUMA’s Sustainability Team is determined to work with Vendors, to help address any root causes of noncompliance (through e.g. training and development projects). However, this can only be effectively conducted within the context of full transparency.

Legal Disclaimer:
The content of this handbook is not intended to replace local or national regulations, nor will following the guidelines in the Handbooks guarantee compliance with them. At all times, it remains the sole responsibility of our own entities and Vendors, and their Subcontractors, to ensure compliance with all applicable local and national regulations, including those labor, worker health and safety, and environmental and product safety.
Sec. 1 – PUMA’s Mission Statement & Sustainability Strategy

1.1 PUMA’s Mission Statement
PUMA’s mission is “to be the fastest sports brand in the world.”

Faster is how PUMA will work towards a more just and sustainable future, accelerating positive change within the industry and the world.

PUMA achieves this by considering the welfare and best interests of:

- the consumers of PUMA products,
- the workers who make them, and
- the environment that provides the resources for their manufacture.

PUMA aims to do this while striving to make our business profitable, in order to continuously optimize the benefits for all our stakeholders.

1.2 PUMA’s Sustainability Strategy
In line with our “Forever Faster” transformation, PUMA has refined its global sustainability strategy that balances three (3) dimensions—Economic, Social, and Environment (see Fig. 1)—to achieve sustainable business development. The new strategy includes a drive to mainstream sustainability, create impact and ensure industry alignment.

1.3 PUMA’s 10FOR20 Sustainability Targets

Figure 2: PUMA 10FOR20 Sustainability Targets

- **Social Compliance** (Reference to ISO 26000, ILO Conventions for all key suppliers, including suppliers of finished goods, components, and materials)
- **Stakeholder Engagement** (Reference to GRI 301-37)
- **Governance** (Reference to GRI 301-37)
- **Environmental P&L** (Reference to IFRS 15 and IFRS 16)
- **Water & Air** (Reference to ILO 6)
- **Environmental Compliance** (Reference to ISO 14001)
- **Climate** (Reference to ISO 14001)
- **Chemicals** (Reference to ISO 14001)
- **Materials** (Reference to ISO 14001)

More sustainable alternatives used for our key materials (cotton, polyester, leather, cardboard, PU)
The PUMA 10FOR20 Sustainability Targets encompass PUMA’s goals for reducing our environmental impact and enhancing our sustainability, which will accelerate positive impact within ten (10) areas of focus (see Figure 2). From 2010 to 2015, PUMA primarily focused on environmental targets within our own direct sphere of influence. Going forward, our lifecycle approach means we have shifted focus to look deeper into our supply chain and balanced our efforts by adding three (3) new focus areas and related targets for 2020: Health and Safety, Human Rights and Governance.

A lifecycle approach starts from product design, e.g. emphasize sourcing significant volumes of raw materials from more sustainable sources. In addition, PUMA encourages its supply chain to adopt Industry Good Practice in manufacturing processes, with the goal of achieving Zero Discharge of Hazardous Chemicals by 2020.

Leading by example, PUMA’s owned and operated entities are required to meet reduction targets that are as ambitious as those established for Suppliers.

In summary, we quantify the impacts of PUMA’s business activities. Corporate environmental accounting is used to track progress towards the PUMA 10FOR20 Sustainability Targets; the PUMA Environmental Profit & Loss Account not only puts a price tag on nature’s services but also provides a useful tool for identifying where the largest environmental impacts lie and how to minimize them (see Environmental Standards handbook).

Sec. 2 – Compliance

2.1 Vendor Requirements

PUMA pursues and maintains contractual relationships only with those Factories and Licensees that have agreed to comply with the guidelines and directives set out in the PUMA Forever Faster Sustainability Handbooks. All PUMA Factories are contractually bound to pursue business relationships only with Subcontractors that are also in compliance with the Handbooks.

To support implementation, Factories shall put into effect Vendor Compliance Programs (i.e. internal policies and control mechanisms that find any potential noncompliance at an early stage and work toward remediation wherever needed). Suppliers shall ensure that all activities, contracts, agreements, accounting, etc., are compliant with the Handbooks.

Each Supplier shall appoint a Sustainability Compliance Officer (“SCO”). Ideally, the Officer shall speak English in addition to the relevant national language, as he/she will be the main point of contact between the Factory and the PUMA Sustainability Team. SCOs will promote the internal development of Vendor Compliance Programs and monitor their effectiveness to aid and ensure full compliance with the Handbooks.

The PUMA Sustainability Team is available for support in these matters. PUMA also supports capacity-building projects and conducts regular consultation with Factories to improve the level of compliance within these facilities.

2.2 Core Supplier Requirements

PUMA considers Core Suppliers as key partners. They are selected on a regular, periodic basis through the PUMA Vendor Rating System. This system is a supplier decision matrix that rates all Suppliers against strategic and operational parameters including the demonstration of Vendor management’s commitment to a PUMA partnership as evidenced by investments and improvements in:

- Compliance and performance according to the Handbooks
- Quality and price
- Delivery performance
- Customer service
The PUMA Forever Faster Sustainability Handbooks detail the minimum requirements for all Core Suppliers and Core Supplier candidates, that are expected for compliance (including enhancement of workplace dialogue and conflict resolution) and management systems. Examples include:

- Certified Management systems (ISO 14001, ISO 9001, OSHAS 45001, and SA 8000)
- Participation in industry schemes such as the Sustainable Apparel Coalition HIGG Index and/or the ILO Better Work Program
- Following best practices outlined in the Handbooks
- Publishing of Supplier’s own sustainability reports

Core Suppliers are expected to have medium-term plans (<12 months) and appropriate procedures in place for implementing strategic compliance and improving social performance in a continuous improvement cycle over time.

Core Suppliers must be able to track their performance against these plans using Social KPIs. They must also be able to report on these metrics to PUMA or to any other interested party such as the FLA on an annual basis, as a proactive step to mitigate social audit fatigue.

2.3 Monitoring Programs & Audit Instruments

The PUMA compliance monitoring program applies not only to manufacturers of finished goods (Tier 1 contract Factories), but also to key manufacturers of components and materials (Tier 2 or 3) within PUMA’s supply chain (whether they may be subsidiaries, licensees, or joint ventures).

PUMA therefore regularly audits every Factory that manufactures PUMA products to verify its compliance with PUMA’s policies and requirements, as well as with applicable national and local laws. A Compliance Audit is an important tool to ensure that the standards in PUMA’s Sustainability Handbooks are observed at facilities in the PUMA supply chain.

Within manufacturing agreements, PUMA reserves the right to conduct a comprehensive audit at Factories.

2.4 Conflicting Requirements & Conflicts of Interest

Vendor compliance programs must guarantee compliance with all relevant local, national, and international legislation. In case of conflicting requirements, the regulation with stricter demands shall be followed.

Factories shall always make company decisions objectively, and free of any bias that could result in a conflict of interest. Examples of potential biases include:

- Business dealings (e.g. having relationships or investment with competitors)
- Social ties (e.g. friends or relatives influencing decisions)
- Other personal considerations (e.g. offering or accepting bribes; receiving gifts from Suppliers, Subcontractors etc.)

2.5 Limitations Regarding Antitrust

PUMA will not willingly violate any antitrust legislation by sharing commercial information or other information considered a violation by government authorities. However, we acknowledge that when Vendor compliance programs converge with other business-related activities (e.g. when Suppliers engage in production planning) the compliance-related data may imply some commercial information.

Thus, Suppliers are responsible for maintaining the confidentiality of commercial information; and must inform all relevant customers, including PUMA, of what information the Supplier shares with which parties.
2.6 Anti-Corruption

Around the world, corruption remains a considerable obstacle to sustainable economic and social development. It threatens the reputations of companies as well as those in their supply chains. Furthermore, new, and stringent anti-corruption regulations continue to emerge worldwide. As a signatory of UN Global Compact, PUMA is committed to uphold the ten (10) Global Compact principles in our operations and supply chain. This commitment includes fighting corruption. As part of this commitment, PUMA has added “Ethical Business Practices” to the PUMA Code of Conduct (see Appendix A). PUMA believes:

- Corruption impedes business growth, escalates costs and poses serious legal and reputational risks. It also raises transaction costs, undermines fair competition, and distorts sustainable development priorities. For Factories, corruption can also negatively impact value. It also poses financial, operational, and reputational risks, both for Factories and their stakeholders.

As part of PUMA’s supply chain, Factories must implement robust anti-corruption measures and practices to protect against such risks for all potentially impacted parties, as follows:

- Conduct regular training to raise awareness on anti-corruption within their organizations
- Conduct an Anti-Bribery and Corruption Risk Assessment
- Develop an anti-corruption policy and program
- Implement a whistleblowing mechanism

2.7 Factory Training & Capacity Building Projects

PUMA supports the development of its Suppliers through capacity-building projects, which aim to improve social and labor compliance and performance. This can be achieved through trainings with NGOs, labor expert organizations, the PUMA team, or related industry initiatives.

These projects are considered investments toward improving working conditions and mitigating risk of negative publicity. They are targeted to create positive impact within or even beyond the Factory.

Suppliers may engage in these investments either jointly with PUMA or on their own. In some cases, such activities may be conducted by the Supplier as a form of corrective action arising from an audit. In these circumstances, PUMA shall be given regular updates on the progress and results in keeping with the Corrective Action Plan in place.

2.8 New Factory Applications

Pre-Screening Visits

Before a PUMA audit is conducted at a Factory seeking PUMA Supplier accreditation, sourcing partners usually conduct a pre-screening to get an overview of the Factory’s compliance status. Based on an initial visit and investigation at the Factory, the sourcing partner may fill out an initial compliance report that can be used to prepare the full audit.

Factory Self-Assessments

In addition, before a Compliance Audit is scheduled, each Factory will be asked to complete a self-assessment questionnaire. This self-assessment questionnaire is similar in scope to the PUMA Compliance Audit. It also allows the Factory in question to compare its existing compliance system with PUMA’s requirements and work on potential areas for improvement before the full audit is conducted.
Sec. 3 – PUMA Compliance Audit

A PUMA Compliance Audit verifies that a Factory is following PUMA standards. Only PUMA and other qualified third-parties designated by PUMA (“Auditor(s)”) may conduct verifiable monitoring activities. PUMA conducts audits with all potential Suppliers prior to the start of business relationship; Factories already authorized for production will be assessed at regular intervals (typically once per year).

PUMA reserves the right to conduct Compliance Audits without advance notice.

PUMA may contact Core Suppliers more frequently. However, not all assessments will be in the form of audits. For example, Core Suppliers may be visited to validate social and environmental KPIs and their entries on the SAC Higg Index.

AUDIT SCORE SUMMARY

- Only Factories with a passing grade of A, B+, or B- will be authorized for PUMA production.
- Factories that receive a C rating will be given a specific timeframe (typically 4 months) to resolve noncompliance Critical Issues. Based on successful completion, the Factory will be upgraded to a B rating and production authorization will be given.
- Factories given a D rating are considered unprepared for compliance with the PUMA Standards. No production authorization shall be given to these Factories. D-rated Factories may apply for a new PUMA Compliance Audit only if they provide Credible Evidence that a higher compliance status has been permanently achieved (e.g. Factory has passed a Compliance Audit report by other brand and presents an externally verified completion of corrective action plan or similar).

3.1 Preliminary Briefing

The audit starts with a briefing to the Factory Management and representatives on the PUMA standards, as well as the audit process and its scope.

3.2 Facility Tour

After the briefing, inspection of all production areas and connected facilities commences. This may include materials storage areas, drinking stations, kitchen, dining room, medical clinic, dormitories, shower and toilet facilities, recreational areas, garbage staging areas and wastewater treatment facility, where applicable. In some cases, areas subject to inspection may be located outside of the Factory premises.

3.3 Document Review

Factory Management must make documents available for review, including but not limited to the following:

- Registration papers with appropriate government agencies
- Business and safety licenses and permits
- Company policies and procedures
- Employment records including contracts and age documentation
- Attendance records, payroll, and other related records
- Those related to health, safety, and environmental practices in the Factory

These documents serve as the primary evidence of the Factory’s compliance performance.
Presentation of fake or manufactured documents during the audit is a serious violation of PUMA’s Code of Conduct and is a Critical Issue.

If Factories present forged/falsified documents or practice other forms of non-transparency, the following consequences may result:

- The audit will be discontinued until Credible Evidence of transparency is obtained,
- The Factory will receive maximum audit rating penalties, and regardless of the final audit grade obtained,
- The PUMA Sustainability Team may recommend against a business relationship with the subject Factory or advise that PUMA discontinue a business relationship that has already been started.

3.4 Employee Interviews

We believe that interviews with worker or union representation are crucial for witnessing and understanding workers’ perspectives on workplace standards and Factory atmosphere.

Interview of randomly selected employees is another important audit procedure. PUMA reserves the right to interview employees of Factories at its discretion. Auditors may conduct these in groups or individually, depending on the nature of the topic or information sought. Interviews may take place onsite, offsite, or remotely, depending on the circumstances during the audit. Onsite interviews may occur during actual work proceedings, or separately, as circumstances warrant.

PUMA prohibits the presence of members of the Factory Management or any office staff during interviews with workers or supervisors to avoid biased answers and coaching. In addition, Auditors will provide workers with PUMA contact details during their interviews.

Any form of management retaliation against interviewed workers is considered a Critical Issue and serious failure of compliance.

3.5 Summary Meeting

PUMA’s Compliance Audits conclude with a summary meeting. Participants include Factory top management and other relevant parties, such as the Factory’s own:

- Sustainability Team
- HR
- OHS Expert
- Environmental Expert
- Worker or union representation

The meeting provides the audit team with the opportunity to:

- Communicate audit findings to relevant parties
- Highlight good practices
- Note areas that require improvement

This meeting also gives the Factory Management an opportunity to:

- React to audit findings
- Contest any they disagree with
- Present relevant proof to support their claims
It is also during the summary meeting that the audit team shall provide the Factory with suggestions for appropriate corrective actions to resolve any noncompliance. At this stage, Factories have ideally signed a corrective action plan (see Sec. 3.6).

3.6 Corrective Action Plan

The Corrective Action Plan documents the issues discovered during the audit, and outlines plans for improvement. Both the audit team and the Factory representative sign the plan, before two (2) copies are made:

- Factory Management receives a copy, which it can use to formulate a plan for corrective actions and an implementation timetable.
- The other copy remains with the Auditor team and is kept on file for subsequent verification of corrective actions and remediation of identified issues.

Depending on the nature of the findings, Auditors may conduct verification of corrective actions either remotely (via desktop review) or in-person (via a follow-up visit); therewith, some immediate corrections may be taken into account prior to the finalization of the audit report, in accordance with remediation standards for the issue(s).

Factories have a maximum of ten (10) days after the audit to send the Corrective Action Plan to the Auditor (including already implemented action points) before the audit report and the Factory rating is finalized.

3.7 Audit Report

The Auditor prepares a report after completion of the audit. In line with PUMA’s principle of transparency, the Factory will receive a printed or electronic copy of the audit report including space to provide feedback on the professionalism of the audit team. The Factory is free to share this audit report copy with other brand customers to reduce audit fatigue.

Please note: Noncompliance of Zero Tolerance issues (see Sec. 4.1) automatically results in a failure rating, regardless of the Factory’s total points. Such Zero Tolerance issues include:

- Proven Case of Child Labour
- Noncompliance with Basic Government Licensing Regulation
- Payment Below Legal Minimum Wage

3.8 Additional Checks for Compliance

As a supplement to the formal audit, PUMA associates who visit any facility that manufactures PUMA products, regardless of their normal assignment, have permission to check for compliance with the Code of Conduct and the Handbooks as part of their regular duties.

See next page.
3.9 The PUMA Audit Rating System

PUMA’s Audit Rating System is based on the ratings: A, B+, B-, C and D. The minimum passing grade is 85% (i.e. only A, B+ and B- ratings are passable) and C and D are failure ratings. The ratings and corresponding grades are:

<table>
<thead>
<tr>
<th>RATING</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>95% to 100%</td>
</tr>
<tr>
<td>Routine: Every 12 months</td>
<td></td>
</tr>
<tr>
<td>• The PUMA Forever Faster Sustainability Handbooks requirements have been met, and there are indications of strategic initiatives to maintain compliance with the PUMA Code of Conduct.</td>
<td></td>
</tr>
</tbody>
</table>

| **B+** | 90% to 94.99% | **PASSED – GOOD RESULT** |
| Routine: Every 12 months |
| • Noncompliance issues are of minor importance and can be rectified immediately. |

| **B-** | 85% to 89.99% | **PASSED – SATISFACTORY RESULT - REMEDIATION NECESSARY** |
| Routine: Another audit is conducted within the next 12 months to check improvements. If there is still no progress, a warning letter is issued. |
| • Noncompliance issues are of minor importance, but there are a larger number of such issues found compared to a B+ rating. |

| **C** | 75% to 84.99% | **FAILED** |
| Routine: Every 4 months |
| • Serious or numerous noncompliance issues found during the audit that must be rectified immediately. |
| • For existing Factories, a follow up audit is conducted within four (4) months to check the remediation status of identified issues. |
| • For Better Work (“BW”) Factories, PUMA will collaborate with both BW and Factories suggesting a specific timeframe to improve the issues based on the BW Improvement Plans. |
| • In the event a Zero Tolerance (“ZT”) issue is identified, all Factories including BW Factories will follow PUMA’s standard CAP timeframe (Depending on the issues found, between 8 weeks to 6 months) to improve the potential ZT issue (see Sec. 4.1). |
| • New Factories will not be provided with manufacturing authorization until the issues identified are rectified and an A or B rating is achieved. |

| **D** | 74.99% and below | **FAILED – FACTORY LACKS BASIC COMPLIANCE SYSTEMS** |
| • Many serious violations or at least one (1) Zero Tolerance issue found (see Sec. 4.1). |
| • For an initial audit of potentially a new Factory, a business relationship will not be started. For an audit of an existing Factory, a phase-out plan will be started, leading to the eventual termination of the business relationship, i.e. Deactivation. |
| • For Better Work (“BW”) Factories, PUMA will collaborate with both BW and Factories suggesting a specific timeframe to improve the issues based on the BW Improvement Plans. |
| • In the event a Zero Tolerance issue is identified, all Factories including BW Factories will follow PUMA’s standard CAP timeframe (Depending on the issues found, between 8 weeks to 6 months) to improve the potential ZT issue (see Sec. 4.1). |

Figure 3: PUMA rating system
3.10 Year-End Grade Guidance

In the past, the Year-End Grade that our Suppliers earned was synonymous with their last audit rating. However, any audit rating is always only a snapshot in time. Therefore, going forward, we have decided to consider the implementation status of Corrective Action Plans (Verification Grade), as well as the occurrence of any serious compliance violations after the last audit, irrespective on how those were brought to PUMA’s attention (Red Flag Incidences).

As audit scores only reflect the status of compliance at a point in time, the purpose of the year-end grade is to capture annual sustainability performance of Factories from a variety of data sources received throughout the operating year. The year-end grade is used to evaluate our Suppliers and will be published in the PUMA Annual Financial and Sustainability Reports on an aggregate level.

See next page.
Sec. 4 – Issues

PUMA’s system for rating Code of Conduct compliance organizes instances of noncompliance into four categories: Zero Tolerance (“ZT”) Issues; Critical (“CI”) Issues, Major (“MI”) Issues, and Regular (“RG”) Issues. When an instance of noncompliance is found, the result is a reduction of the Factory’s audit score according to the following schedule:

- A ZTI results in a 30-point reduction and automatic failure of the audit;
- A CI issue results in a 10-point reduction and a requirement that the Factory take immediate actions to remediate in order to maintain an opportunity to pass the audit;
- A MI issue results in a five-point reduction, where the Factory may still achieve a passing grade but must nonetheless take action to remediate; and
- An RG issue results in a one-point deduction. RG issues are considered non-urgent, and Factories are given reasonable timeframes in which to address them.

4.1 Zero Tolerance (“ZT”) Issues

Zero Tolerance Issues are unacceptable violation of PUMA’s Code of Conduct. If a ZT issue is discovered, the Factory will automatically fail its audit. There is no possibility for the Supplier to produce any PUMA goods if ZT issues are present.

ZT issues are defined as follows:

<table>
<thead>
<tr>
<th>NO.</th>
<th>ZT ISSUE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Noncompliance with Basic Government Licensing Regulation</td>
<td>Missing or invalid business permit, or any missing operation/license/certification that is legally required from local authorities to operate the business.</td>
</tr>
<tr>
<td>2</td>
<td>Payment Below Legal Minimum Wage (see Social Handbook)</td>
<td>Failure of the Supplier to meet any of the following wage requirements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the legal minimum wage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the appropriate prevailing, industry, or sectorial minimum wage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the collectively bargained wage, either national or regional for the workers (including sub-contracted workers or whoever works in the Factory in any operation or service for the Factory)</td>
</tr>
<tr>
<td>3</td>
<td>Proven Case of Forced Labor (see Social Handbook)</td>
<td>Any work or service performed by a worker which worker does not voluntarily agree to, and under the threat of any kind of penalty. All slavery practices, including human trafficking and bonded labor, prison labor, indentured labor, or other form of forced labor.</td>
</tr>
<tr>
<td>4</td>
<td>Proven Case of Child Labor (see Sec. Social Handbook)</td>
<td>A hiring age policy and/or practice that is not in compliance with the legal requirement and/or the PUMA Code of Conduct (whichever is more stringent). The minimum age for employment under international standards and PUMA Code of Conduct is no less than 15 years, or the age at</td>
</tr>
</tbody>
</table>
which compulsory schooling is completed, whichever is higher.

<table>
<thead>
<tr>
<th>NO.</th>
<th>CI ISSUE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Imminent Danger to Life</td>
<td>Any combination of health and safety conditions in the Factory that present an imminent risk or danger to a worker’s life, including unsound Factory building structures.</td>
</tr>
<tr>
<td>6</td>
<td>Illegal Discharge of Waste Water or Hazardous Waste (see Environmental Standards handbook)</td>
<td>Discharging untreated waste water into natural water bodies such as rivers and streams (or into the ground), as well as illegally disposing hazardous waste (such as chemicals or oil).</td>
</tr>
</tbody>
</table>

4.2 Critical (“CI”) Issues

Critical Issues constitute a serious violation of PUMA’s Code of Conduct. They will be treated with higher priority than other findings. Discovery of one (1) or more CIs may lead to a failure of the PUMA Compliance Audit or to a significant downgrade of the final audit grade. CI issues are defined as follows:

<table>
<thead>
<tr>
<th>NO.</th>
<th>CI ISSUE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unauthorized Sub-Contracting</td>
<td>Any operation that Suppliers carry out in outsourced Factories, that has not been approved or audited by PUMA.</td>
</tr>
<tr>
<td>2</td>
<td>Unregistered Workers (see Social Handbook)</td>
<td>Employment contracts must be provided according to local legislation requirements. A working contract or equivalent local document shall be signed with all employees before the start of employment. One (1) copy of this contract shall be filed by the Factory and another shall be given to the worker.</td>
</tr>
<tr>
<td>3</td>
<td>Social Insurance, Provision Deficiency (see Social Handbook)</td>
<td>Any instance where the Factory does not make full contributions to the provident fund / social insurance / medical insurance / unemployment insurance / work injury insurance / maternity insurance / pension scheme(s) or other funds as required by law, taking into account both the employer and employee contributions where applicable. Any instance where the Factory does not keep proper records of payments of contributions to the authorities in relation to social security/medical/pension schemes and funds, with details on the contribution for each employee.</td>
</tr>
<tr>
<td>4</td>
<td>Falsified Records (Statements, Practices & Documentation)</td>
<td>In all instances, a false representation of a matter of fact, whether by word, conduct or documentation. Examples include hiding records, illegal practices, (such as coaching workers for falsified answers in interviews, paying bribes or wherein documentation is found to be inconsistent with other records found at the facility, including verification from workers and other entities, such as civil society and government, as may be pertinent).</td>
</tr>
<tr>
<td>5</td>
<td>Proven Case of Discrimination (see Social Handbook)</td>
<td>Any instance where workers are subject to discrimination in employment, including: hiring, compensation, advancement, discipline, termination or retirement, on the basis of gender, race, color, religion, age, health, disability, sexual orientation, nationality, political opinion, social or ethnic origin, or position.</td>
</tr>
</tbody>
</table>
6 Proven Case of Harassment or Abuse (see Social Handbook)

Any systematic verbal, sexual, physical, or psychological abuse or harassment that may also be part of the Factory’s management style e.g. physical punishment used to discipline workers (such as workers are regularly locked inside the Factory and unable to leave), widespread sexual harassment.

7 Proven Case of Reprisal or Retaliation Against Workers

Penalizing workers without just cause, negative consequences or other inappropriate behavior by the Factory towards workers, such as threatening the same e.g. employee is threatened to be penalized after he/she elects to not perform overtime or hazardous work.

8 Proven Case of No Freedom of Association (see Social Handbook)

Factories that do not recognize or respect workers’ rights to Freedom of Association and/or Collective Bargaining.

9 Sub-license Mission (Environment Permit, Fire Safety Permit, etc.)

Missing or invalid fire safety, building safety or environmental license/permit/certification, as legally required by local authorities.

10 No testing for Restricted Substances

Lack of a procedure to regularly test incoming materials for restricted substances (as per the Restricted Substances List; “RSL”).

11 Missing/Inadequate Professional Risk Assessment (See Occupational Health & Safety Handbook)

This risk assessment should include: general health and safety issues in production processes and devices; fire and electrical safety; mechanical safety; chemical hazards; emissions hazards (including for radiation); confined space hazards; tripping hazards; health risks to vulnerable employees; requirements for frequency of exposure; structure safety; monitoring and prevention; safety control procedures where extreme temperatures may affect workers; fall protection hazards, and other relevant factors.

4.3 Major (“MI”) Issues

Major Issues are crucial violations of PUMA’s Code of Conduct. Suppliers are expected to remediate issues with immediate action or within a reasonable timeframe. We define MI issues as follows:

<table>
<thead>
<tr>
<th>NO.</th>
<th>MI ISSUE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overall Special Performance and Management Commitment Violation</td>
<td>The Factory does not collaborate with PUMA or does not implement/complete/clear all ZT, CI, and MI issues from earlier PUMA audits. Factory does not adopt policies/procedures and conditions of employment that respect workers’ rights, during the tenure of their employment. Any violation of management’s overall commitment, such as rules, policies, or practices.</td>
</tr>
<tr>
<td>2</td>
<td>Insufficient Overtime Payment (see Social Handbook)</td>
<td>The Factory does not pay the correct, legally defined rates for overtime, rest days, and holidays.</td>
</tr>
<tr>
<td>3</td>
<td>Occurrence of Delayed Payment</td>
<td>The Factory has delayed the release payments of wages within the last twelve months in more than two (2) instances.</td>
</tr>
<tr>
<td>4</td>
<td>Proven Case of Homeworking</td>
<td>Evidence of homeworkers or failure to declare subcontracted workers hired by the Factory. The use of homework is not authorized by PUMA. Homework shall</td>
</tr>
</tbody>
</table>
not be confused with micro-enterprises with a legitimate commercial identity. Such micro-enterprises must be evaluated for presence of Critical Issues like child labor (see CI issues). In proven cases of homework, Suppliers will be required to move production processes to legitimate commercial enterprises and compensate the contracted parties either by arranging legitimate employment within their own or other commercial enterprises.

<table>
<thead>
<tr>
<th>5</th>
<th>Regular Working Hours Violation (see Social Handbook)</th>
<th>The Factory does not comply with regular daily/weekly/monthly working hours or has incomplete or contradictory records on working hours.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Excessive Overtime Violation (see Social Handbook)</td>
<td>The Factory does not follow the relevant local law and PUMA’s policy regarding overtime work.</td>
</tr>
<tr>
<td>7</td>
<td>Vulnerable Workers Violation (see Social Handbook)</td>
<td>The Factory does not meet the basic legal requirements regarding working hours, for pregnant/nursing employees and other special vulnerable workers (e.g. young and senior workers), such as shortened work hours or special breaks.</td>
</tr>
<tr>
<td>8</td>
<td>Complaints/Grievance Procedure – Worker Communication Violation (see Social Handbook)</td>
<td>The Factory lacks an effective complaints/grievance process to confidentially gather and address worker allegations, in a manner that protects the complainant against any form of reprisal/retaliation.</td>
</tr>
<tr>
<td>9</td>
<td>Failure to Complete Emergency Reporting to PUMA</td>
<td>Factories shall record accidents that result in work stoppage properly and follow PUMA’s "Emergency Reporting Protocol" when reporting accidents, and ensure that reports are submitted in a timely manner.</td>
</tr>
<tr>
<td>10</td>
<td>Welfare Facilities & Amenities Violation (see Social Handbook)</td>
<td>The Factory is not in compliance with local legal requirements for the provision of facilities such as dormitories, canteens/kitchens, childcare/crèche, lactation area and/or equipment, etc.</td>
</tr>
<tr>
<td>11</td>
<td>Missing MRSL Procedure / Using Banned Chemicals</td>
<td>There is no procedure in place for ensuring compliance with the ZDHC Manufacturing Restricted Substances List (MRSL) for eliminating banned chemicals.</td>
</tr>
</tbody>
</table>

4.4 Regular (“RG”) Issues

Regular Issues are considered minor violations of PUMA’s Code of Conduct. They are treated with lower priority than other issues discovered during the audit. The timeframe for resolving each RI depends on nature of the issues. The PUMA auditor or External Monitor shall provide guidance on the correction and implementation of each issue with Factory Management during the audit summary meeting (see Sec. 3.5).
Sec. 5 – PUMA’s Occupational Health & Safety Policy

PUMA, its Vendors, and its Vendors’ subcontractors must make every effort to provide all employees with a safe and healthy workplace. Employees are expected to support PUMA’s Occupational Health and Safety (“OHS”) policy, as well as adhere to all laws and regulations related to health and safety.

It is a high priority to PUMA on maintaining a safe workplace and minimizing the risks of injury or harm. Work accidents cause personal tragedy and financial loss for the company, and our aim is to avoid them entirely, with a goal of zero fatal accidents and injury rates below the industry average, both in our own operations as well as in the contracted supplier production facilities of our supply chain.

Ensuring the health and safety of all employees is a shared responsibility. *It is the duty of each employee to immediately report to their manager any work-related hazardous conditions, injuries, accidents, or illnesses that may arise.* PUMA encourages all employees to play an active role in identifying hazards and to offer suggestions or ideas to improve and maintain health and safety throughout the workplace.

We recognize that maintaining a safe and healthy work environment **requires ongoing efforts**. We are committed to continuously improving our performance in order to achieve these standards. **Occupational Health and Safety Committees** (“OHSCs”, see Sec. 6.2) monitor health and safety conditions and establish protocols to help prevent accidents. Where these committees are required by local law, their establishment, constitution, and maintenance shall conform to, or exceed, local requirements as necessary.

Factory Management has the following OHS-specific responsibilities:

- Providing a safe and healthy working environment for all persons in their employ
- Proactively identifying and potential or existing hazards and promptly addressing them
- Making health and safety of all workers a top priority
- Regularly instructing their staff on OHS initiatives and document these instructions

Management is supported by OHSCs and OHS specialists (such as OHS engineers and industrial medicine practitioners), who conduct regular checks to satisfy local law, or, where necessary, exceed local regulations to achieve the aim of zero accidents or work-related illnesses.

PUMA monitors Factory OHS performance on a regular basis to document and ensure that our OHS policy and procedures are followed and in compliance.

See next page.
Sec. 6 – Occupational Health and Safety Management System (“OHS-MS”)

6.1 Management System

PUMA expects all owned entities as well as its Vendors and their Subcontractors to implement an OHS Management System (“OHS-MS”), defined as a set of consistent and systematic approaches to the implementation of OHS procedures and practices. OHS-MS may be internally or externally certified according to accepted certifications (e.g. OHSAS 18001 and ISO 45001).

The level and detail of the management system used depend on the size and complexity of the organization using it. Generally, management systems follow a Plan-Do-Check-Act model (see figure) and embody the principle of continuous improvement.

Figure 5: Plan Do Check Act (adapted from ISO)

The OHS-MS must include, at minimum, the following elements:

- An OHS Policy with clearly defined goals
- An organizational structure that assigns clear authorization to act on all health and safety issues as necessary (including identifying the responsibilities of the OHS Committee and OHS team, etc.)
- A Risk Assessment of OHS hazards
- A corrective action plan to address any OHS-related issues found
- Communication and training of staff on OHS-related issues
- Measurement of performance against established standards or regulations and collection of OHS KPIs (for tracking and reporting)
- Continuous improvement goals and practices

An established OHS-MS makes it possible to:

- Control risks which otherwise may result in accidents to persons
- Decrease costs associated with error reduction and correction errors
- Comply with all legal obligations (and therefore commit fewer, or no, violations)
- Communicate the Factory’s commitment to protecting health & safety of workers; thereby, improving morale and relations with workers, public authorities, and business partners
- Fulfill PUMA’s Sustainability standards regarding OHS and associated reporting of Key Performance Indicators (KPIs)

Employees and management must be actively involved in the planning, practice, and evaluation of the OHS-MS. A strong commitment from top Factory Management is also needed to successfully implement the system.
6.2 OHS Committee ("OHSC")

An OHS Committee ("OHSC") plays a very important role in the effective implementation of the OHS-MS, linking the efforts of safety representatives (such as industrial health practitioners and OHS experts), as well as employees, in order to ensure a safe environment.

6.2.1 Objectives & Functions

An OHS Committee are designed to control the measures taken to ensure the safety and health of all employees in the workplace. In carrying out this function, an OHSC shall establish agreed objectives or terms of reference. One of these objectives shall be promoting cooperation between Factory Management and employees in initiating, developing, and carrying out measures to ensure the safety and health of all employees. To ensure continuous improvement and ongoing monitoring, an OHSC shall be established in every Factory and consist of the following members:

- **Chairman** (an individual at the managerial level); and
- **OHSC members**, who may include department/section heads, a workers’ representative, health officer or company physician, safety officers, etc.

Where local regulations specify a specific composition of members—that shall be considered the minimum requirement.

Within the agreed basic objectives of the OHSC, specific functions can be defined. These may include the following:

- Establish a link with the Occupational Health and Safety Branch of the Labour Department. Secure the necessary health and safety permits and ensure that the Factory is in compliance with all relevant standards.
- The **safety officer** shall conduct regular safety inspections and ensure that all hazards are eliminated and controlled where necessary.
- Adequate health and safety, communication, and awareness building systems in the workplace are required.
- Review and study statistics and trends for accidents and workplace illnesses, so that reports can be made to Management on unsafe and unhealthy conditions and practices, together with recommendations for corrective action. Keep records of accidents, illnesses, and relevant activities in the Factory.
- Conduct regular meetings at least once per quarter and keep meeting minutes. In municipalities where the local requirement is less frequent than once per quarter, then the PUMA OHS policy requirement of four (4) meetings per year shall apply.
- Develop training programs for all employees such as firefighting, emergency evacuation, first aid, etc.
- Organize safety-promoting activities such as safety competitions, exhibitions, film shows, safety incentive schemes and processes for submitting and reviewing suggestions for improving workplace safety.

6.2.2 OHSC Training

PUMA requires that members of the OHSC receive training to enable them to effectively carry out their role and responsibilities. Examples of forms of training may include education on the following:

- Health and safety basics
- Hazardous materials
- Hazard identification
- Workplace inspection
- Effective meetings

Problem solving “refresher” training on the above topics shall be provided on a regular basis to ensure all OHSC members have ongoing access to the resources required to fulfill their responsibilities to the Committee.
6.3 Risk Assessment

The risk assessment is a process used to identify hazard and risk factors that have the potential to cause harm or injury, analyse and evaluate the risks associated with the hazard, and ensure the adequacy of any existing or missing controls to eliminate or mitigate those risks. **Larger factories or those with complex industrial processes shall consider securing the help of a qualified OHS engineering firm to conduct their risk assessment.**

6.3.1 Risk Assessment Process

The six steps that comprise the risk assessment process are outlined in Table 1, below:

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
<th>EXAMPLES OF WHAT MAY BE ADDRESSED</th>
</tr>
</thead>
</table>
| 1) **Plan and Prepare** | Conduct a process mapping, including all employees’ functions, operating units, and processes. Ensure an expert team of OHS experts conducts the assessment. | • Consider all main and auxiliary processes
• All employees
• Factory layout and process flow diagrams
• Building (s) structure
• Power and electric supplies
• Fire safety
• Emergency and evacuation procedures
• All operating units or departments
• Support facilities (HVAC, WWTP, Power Genset, etc.)
• All machines
• All work processes and tasks
• Surrounding areas outside of buildings
• Vehicles and human traffic
• Accident records
• Legal requirements |
| 2) **Identify Hazards** | Identify hazards in each task at different work processes, considering the whole working environment. | • Identify hazards involving manual work
• Identify hazards where machines are involved
• Identify hazards where both human and machines are involved
• Identify physical risks
• Consult with workers directly involved in the tasks
• Rate each hazard along the Severity of Hazard rating system |
| 3) **Analyze Risks** | Analyze the likelihood of an accident for each hazard | • Conduct a Job Safety Analysis / Job Hazard Assessment
• Identify hazards where workers are likely to be exposed
• Rate the risks of hazard exposure by frequency or duration (Refer to Exposure formula) |
| 4) **Evaluate Risks** | Rate overall risks | • Calculate the severity of the hazard by the exposure to it (Risk = Severity of Hazard x Frequency of Exposure)
• Consider existing control measures in place to reduce overall risks
• Highlight major and potentially fatal risks |
| 5) **Control Risks** | Mitigate risks | • Rank / prioritize the risks
• Plan Control Measures and set KPIs
• Consult with staff in the area |
6.3.2 Risk Assessment Chart

It is possible to formalize the results of the risk assessment in a chart, such as in the following example (see Table 2 below):

Table 2: Risk Assessment Chart – Example

<table>
<thead>
<tr>
<th>Hazardous situations</th>
<th>Potential damages</th>
<th>Severity of risk</th>
<th>Level of Exposure</th>
<th>Risk Rating</th>
<th>Existing preventive measures</th>
<th>Actions to implement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewing machine</td>
<td>Puncture finger</td>
<td>Medium</td>
<td>Frequent</td>
<td>Medium</td>
<td>Needle guards on sewing</td>
<td>Train workers;</td>
</tr>
<tr>
<td>(single-stitch,</td>
<td>of machine</td>
<td>= 2</td>
<td>= 3</td>
<td>= 6</td>
<td>machines.</td>
<td>regularly monitor</td>
</tr>
<tr>
<td>overlock)</td>
<td>perator.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>completeness of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>guards on machines.</td>
</tr>
</tbody>
</table>

For additional guidance on risk assessment methodologies and tools to meet specific needs, please refer to local health and safety authorities specializing in this area, or professional health and safety engineering firms.

6.4 Key Performance Indicators on Health & Safety

Tracking relevant KPIs not only ensures compliance to legal, industry, and internal standards, but also enables the organization or factory to monitor performance over time. PUMA therefore requires the tracking of the following KPIs:

- Number of total Accidents with work stoppage per year
- Number of Fatal Accidents per year
- Number of Work-Occupational Diseases per year
- Injury rate (i.e. number of Injuries with Work Stoppage per 100 full-time employees per year)

The Glossary of this Handbook (see Appendix C) contains additional OHS KPIs that may be of interest, along with definitions for relevant terms.
Sec. 7 – Definitions & Calculations of OHS Hazard Risks

7.1 Hazard Frequency of Exposure (“FoE”)
The Frequency of Exposure (“FoE”) is defined as “the likelihood that a person or worker will be exposed to a OHS hazard.” FoE is quantified for risk evaluation and its levels are defined below.

In order to quantify the risk a hazard poses, we calculate an employee’s frequency of exposure at different exposure levels in Table 3 below (on the basis of one employee working 40 hours week @50 weeks a year = 2,000 hour per year; or for 100 employees = 200,000 hours per year).

Table 3: Hazard Frequency of Exposure

<table>
<thead>
<tr>
<th>EXPOSURE LEVEL</th>
<th>FREQUENCY OF EXPOSURE</th>
<th>@ 1 person / task</th>
<th>@ > 1 person / task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Improbable</td>
<td>0.000 – 0.006</td>
<td>1 man-hour per month</td>
<td>12h/2000 = 0.006</td>
</tr>
<tr>
<td>2 = Remote</td>
<td>0.006 – 0.025</td>
<td>1 man-hour per week</td>
<td>50h/2000 = 0.025</td>
</tr>
<tr>
<td>3 = Occasional</td>
<td>0.025 – 0.125</td>
<td>1 man-hour per day</td>
<td>250h/2000 = 0.125</td>
</tr>
<tr>
<td>4 = Probable</td>
<td>0.125 – 1.000</td>
<td>8 man-hours per day</td>
<td>2000h/2000 = 1.00</td>
</tr>
<tr>
<td>5 = Frequent</td>
<td>> 1.00</td>
<td>> 8 man-hours per day</td>
<td>> 1.00</td>
</tr>
</tbody>
</table>

For a situation involving sewing lines with 50 workers exposed to a hazard in electrical panel, working 10 hours per day, the risk would be measured according to the following formula:

= 50 workers x 10h per day x 5 days x 50 weeks = 125,000 hours per year
= 125,000 hours per year / 200,000 hours per year = 0.625 → Hazard FoE Exposure Level = 4

7.2 Severity of Hazard
The severity of a hazard can range from minor to fatal in its categorization (see Table 4 below):

Table 4: Hazard Severity Categorizations

<table>
<thead>
<tr>
<th>SEVERITY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Minor</td>
<td>No significant risk of injury</td>
</tr>
<tr>
<td>2 = Moderate</td>
<td>Potential for minor injury</td>
</tr>
<tr>
<td>3 = Serious</td>
<td>Potential for moderate injury</td>
</tr>
<tr>
<td>4 = Critical</td>
<td>Potential for severe injury</td>
</tr>
<tr>
<td>5 = Fatal</td>
<td>Likely to result in death</td>
</tr>
</tbody>
</table>
7.3 Risk Evaluation – Calculation

Risk evaluation is quantified by calculating the combined severity of a hazard and frequency of exposure, according to the formula below:

\[
\text{Risk} = \text{Hazard Frequency of Exposure} \times \text{Severity of Hazard}
\]

Using this formula, one is able to calculate the risk rating of different hazards at different exposure levels. Below is an example risk for hazard to using electric leakage from an electrical panel:

- **Frequency of Exposure**: At the sewing line, exposure level = 4
- **Severity of Hazard**: Electric leakage from electrical panel is categorized as a fatal hazard = 5
- **Risk Rating** = \(5 \times 4 = 20\)
- **Refer to the risk matrix below to identify level of priority**

Table 5: Risk Matrix

<table>
<thead>
<tr>
<th>Hazard Level</th>
<th>LEVEL OF EXPOSURE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW</td>
<td>RARE</td>
<td>FREQUENT</td>
<td>VERY FREQUENT</td>
<td>EXTREMELY FREQUENT</td>
<td></td>
</tr>
<tr>
<td>1 = Minor</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2 = Moderate</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3 = Serious</td>
<td></td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>4 = Critical</td>
<td></td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>5 = Fatal</td>
<td></td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

Sec. 8 – OHS Hazard Control Measures

The *Hierarchy of Control* is a system used in industry to minimize or eliminate risk exposure, that encourages the use of the following risk mitigation Control Measures, in order of decreasing effectiveness:

1. Elimination
2. Substitution
3. Engineering controls
4. Administrative controls
5. Personal protective equipment ("PPE")
8.1 Level 1 Control Measures – Eliminate the Hazard

The most effective mode of hazard elimination is prevention, or not introducing the hazard into the workplace from the start.

Level 1 Control Measures eliminate the source of a hazard completely. As such, Level 1 controls are the most effective measures for reducing all risks associated with hazards.

For instance, the risk of a fall from height can be eliminated by having the work performed at ground level instead. Risk may also be eliminated by removing the hazard completely, such as by removing trip hazards on the floor or properly disposing of unwanted chemicals immediately (rather than storing them onsite, for example).

Hazard elimination is often cheaper and more practical to achieve during the design or planning stage, whether for a product, process, or workplace. In these early phases, there is greater scope available to ‘design out’ and eliminate hazards, or to incorporate risk control measures that are compatible with fundamental design and functional requirements.

For example, a noisy machine may be designed and built to produce as little noise as possible, which is a more effective risk mitigation approach than providing workers with personal hearing protectors at a later stage.

In some cases, it may not be possible to achieve Level 1 control and eliminate a hazard completely if doing so disrupts the manufacture of the end product or service delivered. If the hazard cannot be eliminated, then the next best available option is to take measures to remove as many of the risks associated with the hazard as possible is (see "Level 2 – Minimize the Hazard" below).

8.2 Level 2 Control Measures – Minimize the Hazard

If not reasonably practicable to eliminate the hazards present in the workplace and their associated risks, these risks shall be minimized using one or more of the following approaches according to the Hierarchy of Control level:

- **Substitute the hazard with something safer** - For instance, replace solvent-based paints with water-based ones.
- **Use engineering controls** - An engineering control is a control measure that is physical in nature, including a mechanical device or process. For instance, using mechanical devices such as trolleys or hoists to move heavy loads; place guards around moving parts of machinery; install residual current devices (electrical safety switches); Another example is isolating the hazard from people would involve physically separating the source of harm from people by distance or using barriers. For instance, install guard rails around exposed edges and holes in floors; use remote control systems to operate machinery; store chemicals in a fume cabinet.
- **Use administrative controls** - Administrative controls are work methods or procedures that are designed to minimize exposure to a hazard. This may include, develop procedures on how to operate machinery safely, limit exposure time to a hazardous task, and use signs to warn people of a hazard.
- **Use personal protective equipment (PPE)** – Note that the use of PPE is considered the least reliable of control measures and provides lowest levels of protection. PPE use is vulnerable to human error and should be considered the last resort.

Sec. 9 – Incident Investigation & Reporting

During Incident investigations, it is important to emphasize that the overall purpose of the investigation is not to allocate blame, but instead to establish the circumstances surrounding an incident or disease and identify measures to help prevent a recurrence.

Please note the following definitions:

- An **Incident** is an unplanned event that result in personal injury or property damage which is worthy of recording. Incidents are not limited to accidents but also include situations that almost lead to an accident (i.e. a ‘near miss’).
• An **Accident** is an unplanned and sudden event leading to the injury of a person or damage of goods that was considered unpreventable.

• A **Notifiable Accident** is an accident that needs to be reported to the local authorities (definitions may vary depending on local regulations).

• An **Occupational Disease** is a disease caused by factors related to the workplace (e.g., loss of hearing due to long-term exposure to noise in the workplace).

• A **Reportable Disease** is a disease considered to be of public health interest.

9.1 PUMA Emergency Reporting Protocol

PUMA created an Emergency Reporting Protocol for suppliers to ensure that reliable and concrete information regarding any emergency is provided to PUMA within 24 hours. This information shall accurately reflect the emergency’s causes and consequences so that PUMA can respond appropriately and based on facts. The protocol applies to apparel, footwear, and accessories factories (as well as affiliated facilities) involved in processing and manufacturing PUMA’s products and product components.

For further details and a form to report emergencies to PUMA, please refer to Appendix C.

There are three (3) types of emergency cases falling under the scope of the emergency protocol:

- **Fatal**: An Accident leading to the death of an employee.
- **Major / Critical**: An Accident resulting on a permanent disability or illness that leaves an employee unable to return to the same job or similar tasks.
- **Major / Serious**: An Accident resulting in a severe injury or illness that causes temporary disability to the employee (but allows them to return to the same job after treatment and recovery). Lost working time is more than one-man-day.

Figure 6: Flowchart PUMA Emergency Reporting Protocol

9.2 Incident Investigation

All Incidents, Occupational Diseases, and Reportable Diseases shall be registered in a centralized incident (and/or disease) register and investigated to determine their causes. Corrective actions shall be taken where necessary.

- For less severe incidents, Health and Safety Engineer shall carry out the investigation.
- For more severe incidents, a team including the Health and Safety Engineer, Factory Management and worker representatives will lead the inquiry.
- For very severe or fatal accidents, police and/or local authorities need to be informed and included in the investigation.

The benefits of investigating Incidents and Occupational or Reportable Diseases include:

- Establishing the surrounding circumstances
- Conclusively determining the cause(s)
- Considering appropriate actions to prevent a recurrence
- Fulfilment of statutory obligations to report where applicable
9.2.1 Recording Information (Establishing the Circumstances)

The person or team investigating the Incident (or Occupational or Reportable Disease) shall gather as much factual information as possible early in the investigation. Examples of factual information may include the following:

- The names of all persons involved, as well as any witnesses present
- The personal details of the injured person (and/or details of ill health or damage to the plant) and the extent of the injuries, damage, or ill health
- The type of work being performed when the incident took place
- The exact location of the incident (photographs, sketches and/or plans may prove useful)
- The time and date of the incident
- The working conditions at the time of the incident (e.g. weather, ground conditions, lighting, etc.)
- Interviews with the injured persons and witnesses (interviews shall be carried out as soon as possible to optimize their accuracy)
- An analysis of how the incident occurred, including the identification of probable causes

The investigation of notifiable accidents shall always be carried out immediately after the occurrence of the accident. Sketches, photographs, and written statements shall be included in the incident investigation report as supporting material.

9.2.2 Determining the Causes of an Incident

Once the necessary information has been gathered on the circumstances surrounding the Incident, the investigator must then determine the causes of the Incident. While it is important to assess the immediate cause of an Incident, it is even more important to identify the underlying causes that may have initially allowed the incident to transpire.

The immediate or direct causes of Incidents usually relate to:

- An unsafe condition in the workplace such as poor housekeeping, defective machinery, inadequate lighting, ineffective control measures; and/or
- Unsafe acts carried out by employees, such as the failure to use personal protective equipment or using equipment without an authorization.

These immediate causes often arise as a result of contributory or underlying causes, generally related to the working arrangements in place and organizational management, e.g. inadequate safety policy, an insufficient risk assessment, a lack of training of employees, unsafe machinery, or excessive use of overtime or time pressure.

All causes of Accidents, when identified, must be entered in the report form PS-Accident-001 and PS-Accident-002 (see Appendix C and D).

9.2.3 Taking Appropriate Corrective Action

Every attempt shall be made to identify suitable corrective actions for all the causes identified, both immediate and underlying. In some cases, it may be possible to remedy the cause immediately, such as replacing a missing machine guard, disposing of a hazardous chemical, or repairing defective Local Exhaust Ventilation (“LEV”).

When required corrective actions are confirmed, the details of the subsequent plan shall be entered in the report forms PS-Accident-001 and PS-Accident-002 (see Appendix C and D). The corrective actions resulting from the incident shall
be completed within the time limits recorded in the report form. When they are completed, the forms shall be updated to include the date of completion.

All actions taken shall be reviewed by the Health and Safety Engineer to ensure their efficacy.

9.2.4 Circulating the Results of the Investigation

To obtain the maximum benefits of the investigation, the Factory must ensure that the results are circulated to those individuals who may need to act on them, as well as to those who might find them of interest or of use. Individuals who may fall into these categories include:

- The OHSC
- Managers and supervisors, including those working in the area where the incident occurred, and those in other departments where similar work processes are carried out or similar equipment used
- Personnel staff, including those responsible for implementing new training arrangements and changes in job descriptions
- Other relevant persons, including safety representatives, OHSC members and safety advisers, where appointed
- PUMA Sourcing/Production management located at the factory or responsible for the Factory (only in cases of fatalities or major/critical incidents)
- PUMA’s Sustainability Team (only in case of fatalities or major/critical incidents)

9.2.5 Training

In order for the accident reporting and investigation procedures to be successful, both the employees and managers involved must be competent to carry out their roles.

- Suitable training must be provided employees and managers alike to ensure that these duties will be properly carried out.
- Employees must be informed of the reporting procedure, the location of the accident book, and the procedure for adding entries.
- Supervisors and managers must be informed of their roles and responsibilities in an investigation and, if applicable, their role in accident notification requirements under local laws and regulations.

See next page.
Sec. 10 – Safety Management Policies

10.1 General Machinery, Equipment & Tool Safety

Specific safety measures may be applied to the use of different machines and tools in order to minimize the risk of harm to all employees. This section provides an overview of safety procedures for the following:

- Machine Guarding
- Elevators & Lifts
- Forklifts
- Electrical Safety
- Control of Hazardous Energy

10.1.1 Machine Guarding

Machines with moving parts have the potential to cause severe workplace injuries. Any machine part, function, or process that may cause injury must therefore be strictly safeguarded. When the operation of a machine or accidental contact with it can injure the operator or others in the vicinity, PUMA requires that the hazards must be controlled or eliminated.

Examples of preventative measures to reduce the risk of injury from machines include:

- Design the machine in a manner that removes dangerous parts (or exposed dangerous parts).
- Make any dangerous parts of the machine inaccessible in order to prevent employee contact.
- Train the machine operators (and all personnel who may approach the machine) in the appropriate operating safety procedures.
- Select the appropriate guard for the particular machine.
- Ensure that the guard cannot be removed or defeated.
- Ensure that the guard does not constitute a secondary hazard.
- Prioritize the use of the simplest guard type possible (e.g. a fixed guard with no moving parts).
- Establish a failsafe mechanism to protect the operators.
- Ensure that the operators understand the procedures and that they use them at all times.

See next page.
In order to meet the minimum general requirements to protect a worker against mechanical hazards, safeguards must do the following:

- Prevent hands, arms, and any other part of a worker's body from making contact with dangerous moving parts
- Ensure that no objects can fall into moving parts
- Be difficult to remove or tamper with
- Create no new hazard
- Create no interference

Fixed guards provide the highest standard of protection. Whenever practical, these shall be used where access to the dangerous area is not required during normal operation of the machinery. The following gives guidance on the selection of safeguard types depending on the circumstances:

Where access to the danger area is not required during normal operation, the following safeguards are recommended:

- Fixed guard, where practical
- Distance guard
- Trip device

Where access to the danger area is required during normal operation, PUMA recommends implementing this expanded list of safeguards:

- Interlocking guard
- Automatic guard
- Trip device
- Adjustable guard
- Self-adjusting guard
- Two-hand control

10.1.2 Elevators & Lifts

An elevator is defined as a permanent hoisting and lowering mechanism with a car or platform, moving vertically and serving two (2) or more floors of a structure. The term excludes such devices as conveyors, tiring or piling machines, material hoists, skip or furnace hoists, wharf ramps, lift bridges, car lifts and dumpers.

The following safety measures apply to the use of all elevators:

- A valid safety inspection certificate (or a copy of one) shall be posted in each elevator.
- Each elevator shall have a sign stating whether it is intended for passenger or freight use and indicating its load capacity.
- “Elevator Use Safety Tips” shall be posted in each elevator. Appropriate warning signage regarding the dangers of using elevators during emergency situations (e.g. “in case of fire or emergency do not use”) must be posted outside the elevator door at each level.
- Elevators must have doors, and the doors shall be equipped with interlock devices that prevent the door from opening unless the elevator is present.
- Elevators must be wired to be inoperable when the doors are open.
- Emergency call devices or other communications tools shall be installed in each elevator.

See next page.
10.1.3 Forklifts

Forklifts (also known as lift trucks) are used in daily operation in many Factories, primarily to move materials. They can be used to move, raise, lower, or remove large objects or a number of smaller objects on pallets or in boxes, crates, or other containers for short distances. **The following safety measures apply to the use of all forklifts:**

- Only workers with a valid driver’s license or certificate for forklifts shall be authorized to operate them
- Forklifts shall never be used to uplift persons, unless a dedicated and safe equipment (e.g. a box secured against slipping from the fork and with handrail) is available for this purpose
- Forklifts must undergo regular and documented maintenance
- Understand the characteristics and capacity of the forklift thoroughly and never overload it.
- Travel only at a safe speed, particularly over uneven ground. Respect speed limitations.
- Do not use as a crane unless the correct accessory is fitted, and unless the weight of the object plus accessory is less than the capacity of the truck.
- Only use the approved roadways when travelling to reduce the risk of colliding with people.
- The forklift shall be equipped with mirrors, warning lights and audible signals for reverse travel.
- The forklift shall be equipped with rollover protection, protection against falling objects, and seat belts or other restraints for the operator. Forklifts shall also be equipped with fire extinguishers.

10.1.4 Electrical Safety

Electricity and its sources pose serious workplace hazards when not regularly inspected, placing employees at risk of electrocution, electric shock, electrical burns, fire, falling, and explosions.

The following rules shall be observed to ensure electrical safety in the workplace:

- Only authorized personnel licensed for electrical work are permitted to repair, adjust, test or service electrical equipment. In certain regions, this requires that the factory hire an external certified contractor to complete these tasks.
- Applicable local and national codes and regulations must be followed at all times. Live electrical equipment or electrical component parts must be grounded, isolated or provided with other means of protection to prevent potential exposure to employees.
- All electrical equipment must be in safe condition before using. The maintenance department must remove all defective equipment and keep it out of the workplace until it is repaired or replaced.
- Personal portable electrical equipment (such as heaters) must be approved prior to use.
- Do not overload electrical equipment or electrical outlets. Only use approved extension cords and outlets.
- Only extension cords that are intended for the equipment and conditions associated with the operation are permitted. Cords must be grounded and inspected prior to use to assure proper grounding.
- Electrical devices, such as junction boxes and distribution panels, must be closed, undamaged, and not be misused for direct connection with machines.
- Wires must be well-insulated, replaced if damaged, and protected against mechanical damage and damage from heat where necessary.
- Clear warning signs must be erected in high-voltage areas that warn against all “non-authorized access” and “improper storage inside the high voltage area”. Warning signs shall be installed on all equipment and facilities as required by law.
- Regular maintenance and inspection programs shall be carried out for all electrical equipment. Inspection frequency depends on the local country regulations, type of equipment, the environment it is used in, and the frequency of use. Related maintenance records and external inspection reports shall be kept as required.
- All employees must be trained in electrical safety rules and reporting procedures for electrical deficiencies.
10.1.5 Control of Hazardous Energy (Lockout/Tag-Out)

Lockout/Tag-Out (“LOTO”) refers to specific practices and procedures to safeguard employees from the unexpected re-energizing or start-up of machinery and equipment, or the release of hazardous energy during service or maintenance activities.

- Factories must have written lockout/tag-out and maintenance procedures to keep maintenance personnel and equipment operators safe during operations such as lubricating, clearing or un-jamming of machines, needle changes, or changing of dies or machine parts.
- Each piece of machinery or equipment must have its own electrical, pneumatic, or hydraulic disconnect switch or valve so that the individual machine or piece of equipment can be isolated from the others, e.g.:

 1. Disconnect mains!
 2. Prevent reconnection!
 3. Test for absence of harmful voltage!
 4. Ground and short circuit!
 5. Cover or close nearby live parts!

Trainings must ensure that employees understand the purpose, function, and restrictions of the Lockout/Tag-Out program.

- **"Authorized" employees** are those responsible for implementing the Lockout/Tag-Out procedures or performing the service or maintenance activities. They require knowledge and skills necessary for the safe application, use, and removal of energy-isolating devices.
- **"Affected" employees** (usually machine operators or users) operate the relevant machinery or have jobs requiring them to be in the area where service or maintenance is performed.
- **All other employees** are those whose work operations are, or may be, in an area where Lockout/Tag-Out process is applied.

Factories must provide training specific to the needs of all three categories of workers. The following is an overview of required trainings:

- **"Authorized" employees**
 - Hazardous energy source recognition;
 - The type and magnitude of the hazardous energy sources in the workplace; and
 - Energy-control procedures, including the methods and means to isolate and control those energy sources.

- **"Affected" employees**
 - Recognize when the energy control procedure is in use,
 - Understand the purpose of the procedure, and
 - Understand the importance of not tampering with Lockout/Tag-Out devices and not starting or using equipment that has been locked or tagged-out.

- **All "other" employees**
 - Instruction regarding the energy-control procedure
 - The prohibition against removing a Lockout/Tag-Out device and attempting to restart, reenergize, or operate the machinery
10.1.6 Special Work Permits

Special work permits are required for work in areas capable of causing serious injury and/or death to employees. The following are classified as special work environments:

CONFINED SPACE
- Large enough and so configured that an employee can bodily enter and perform assigned work
- Has limited or restricted means for entry or exit (e.g. tanks, vessels, silos, storage bins, hoppers, vaults, and pits)
- An isolated place in the facility that is not suitable for long term operation for workers
- A space that is not frequently attended to or occupied by employees but has high risk of Accidents occurring is also considered a confined space, and thus requires a special work permit. All tasks conducted in confined spaces, whether routine or emergency-related, must be attended to by at least two personnel at all times.

HOT WORK
- Any process that can be a source of ignition when flammable material is present or can be a fire hazard regardless of the presence of flammable material in the workplace
- Common hot work processes are welding, soldering, cutting and brazing. When flammable materials are present, industrial processes such as grinding and drilling become hot work processes

WORKING AT HEIGHT
- Work, in any place, occurring over six (6) feet above the ground

EXCAVATION WORK
- Any man-made cut, cavity, trench, or depression in the Earth’s surface formed by earth removal
- *Each employee proceeding excavation work or work nearby shall be protected from a cave-in/fall-in by an adequate protective system

All employees who are authorized as special work permit work supervisors, attendants and operators, and subcontractor personnel shall be trained and certified in these operating procedures.

- The training shall be performed upon initial assignment of such work, and refresher trainings will be conducted annually to keep employees’ understanding of policies as up-to-date as possible
- The training may be conducted by the department manager or supervisor, or coordinated through the Safety Department

The training shall include the following:

- Definition of the scope of work requiring a special work permit
- Information regarding hazards and Control Measures
- An overview of work procedures
- Responsibilities of the entrant and attendant
- Rescue/emergency procedures

A special work permit system must be put in place to ensure all hazards are evaluated and that proper precautionary measures and controls are taken, both before entering special work permit areas and while working inside of them (See Appendix B). Each cancelled/completed permit and related documents for special work permit training, incidents, medical issues, and risk assessment shall be documented and retained for one year by the department conducting or supervising the entry. Retaining records in this manner enhances the ability to audit the training program’s effectiveness and make improvements wherever necessary.
10.2 Chemical Safety Management

Every worker has the need and the right to know the identities and hazards of substances he/she is exposed to when at work. *A documented Chemical Safety Plan must be implemented in every workplace, no matter the number of chemicals used at the factory or their Levels of Hazard.* The key elements of Chemical Safety Management include a hazard assessment to highlight greatest risks, and steps to minimize chemical and fume exposure:

HAZARD ASSESSMENT
- Prior to using new chemicals, an assessment of potential hazards must be completed.
- Specific guidelines and protection procedures shall be developed based on the findings from the assessment.
- The result of the assessment shall be documented and communicated to those workers whose work involves the chemicals or is relevant in any way.
- Supervisors shall develop and promulgate process-specific guidelines and communicate the implementation of protective procedures to reduce risk of harm.

MINIMIZE CHEMICAL EXPOSURE
- In order to minimize the Risk of Exposure to chemicals, several control measures shall be taken, including substitution (wherever possible), engineering controls, administrative controls, and the usage of proper personal protective equipment.

PROVIDE ADEQUATE VENTILATION
- The best way to prevent exposure to airborne substances is to prevent their escape into the working atmosphere through the use of exhaust fans, hoods, and other ventilation devices.
- All workstations where chemicals are used (such as in spot cleaning) must be isolated using a separate enclosure and shall be strategically located near windows or other openings.
- Exhaust air must be completely removed and either filtered or released outside of the workplace.

10.2.1 Chemical Safety Plan

The major elements of a Chemical Safety Plan include procurement, responses to spills, storage (and maintenance of storage facilities), first aid resources, communication policies, safety training, and disposal. This section provides an overview of each of these major elements.

PROCUREMENT AND DISTRIBUTION

Whenever a request for procurement (replacement or replenishment) of a chemical is raised, the following must be confirmed (with internal staff and the vendor, as required):
- Chemicals will be issued only to authorized requestors
- Assurance that the vendor will choose the least hazardous chemical among available options
- Location of planned use
- Assurance that engineering controls, if required, are adequate
- Containers must have adequate labels, identifying the contents of the container and associated hazards (those that do not shall not be accepted)
- Appropriate equipment, such as hand pumps, shall be used to transfer chemicals from one container to the other. Crude methods of transfer, such as pouring chemicals from one container to another without the use of a suction arrangement, can lead to spillage or chemical exposure and must be strictly avoided.

1 Please refer also to the PUMA Handbook on Chemicals Management and its provisions regarding following the Manufacturing Restricted Substances List of the ZDHC as well as the target of Zero Discharge of Hazardous Chemicals by 2020.
CHEMICAL SPILLS

- Adequate equipment shall be available to handle spillage of hazardous chemicals in a manner that protects the health of the workers handling the spillage, as well as the environment (examples of this include sand or similar liquid binding substances for handling oil-spills)

CHEMICAL STORAGE AREAS

- Chemicals shall be stored in a location earmarked for the purpose and the said location must comply with the guidelines provided below (according to the size of the chemical storage room)
 - **Emergency lighting**
 - The chemical storage area shall be provided with adequate emergency lights with a minimum of one-hour individual battery backup
 - **Floors and aisles**
 - Floor finish shall be slip-resistant and impermeable
 - Floors and aisles shall be protected against spillages to the outside, ground or groundwater
 - Aisles shall be at least 1.1m wide
 - Doors shall not open directly into passageways
 - **Entrances and exits**
 - Both regular and emergency exits shall be marked clearly
 - Doorways shall be unobstructed and swing in the direction of the escape route
 - Exits must be entirely free of the presence of hazardous materials
 - **Ventilation**
 - Chemical storage areas shall be ventilated separately from the rest of the building and exhausts must be released at a safe distance from the building
 - Storage area shall be ventilated by at least four (4) changes of air per hour. The chemical storage exhaust from the building ventilation system must be isolated
 - Activated carbon filters shall be added where necessary to avoid emission of hazardous chemicals to the air
 - **Storage**
 - Stored chemicals shall be arranged in compatible families according to their components rather than in alphabetical order
 - Storing chemicals on shelves above eye level shall be avoided
 - Chemicals must be located far away from water sources
 - Appropriate secondary containment arrangement must be provided
 - Chemicals stored in the workplace or in mixing areas shall not exceed the maximum amount of the daily usage allowed in the workplace

Table 6: Classification of Chemicals for Storage

![Figure 7: Chemical storage](image-url)
• Fire extinguishers: Tri-class ABC fire extinguishers (with a minimum gross weight of 5.5 kg) must be kept in the chemical storage area. A fire alarm calling point is mandatory. An eyewash station, along with a head shower and fire blanket, must be provided. Care must be taken in deciding the location of the eyewash station, and proper means of draining water from it without wetting the storage area must be established. A separate storage area for PPEs such as aprons, nose-masks, goggles shall also be provided within the facility. A separate wash area near the exit of the chemical storage area shall be provided with adequate supplies of soap solution and towels. (see Sec. 10.3.1)

• Drainage: Proper drain facilities must be provided to ensure that the chemical storage drain does not go to the general drain or into the soil below the storage facility.

• Signage: An "Authorized Personnel Only" sign must be displayed at the entrance of chemical storage areas.

HOUSEKEEPING, MAINTENANCE, & INSPECTION OF THE CHEMICALS ROOM

- Cleaning
 - Floor and equipment shall be cleaned regularly
 - Employees involved in housekeeping activities at the chemical storage area must be properly trained on safety-related issues for such tasks

- Inspections
 - Chemical safety inspections need to be conducted, at least once every quarter, to ensure the following:
 - Adequate safety equipment is available and functioning
 - Personal protection is available
 - Chemicals are properly stored
 - Material Safety Data Sheets ("MSDSs") are readily available
 - Good housekeeping practices are in place is in practice
 - Spill kit and first aid kits are adequately stocked
- Chemical safety inspections must be documented showing details of necessary corrective actions taken, where relevant

MEDICAL SAFETY: FIRST AID KITS AND EXAMINATIONS

- **First aid kits**
 - A first aid kit with all required contents must be provided in the chemical storage area
 - At least two (2) employees who are regularly employed in or near the chemical storage area must be trained, to administer first aid and, on procedures for responding to chemical exposure

- **Medical examinations**
 - Workers whose jobs expose them to chemicals (e.g. spot cleaning and printing workers, workers involved in housekeeping of the chemical storage area, etc.) must complete a medical examination at least once per year
 - Medical examination results must be documented alongside any measures taken to reduce exposure for workers whose medical examinations reveal negative impact from chemicals

PERSONAL PROTECTIVE CLOTHING AND EQUIPMENT

The Factory shall provide those employees who handle chemicals with proper Personal Protective Equipment (“PPE”) and clothing in accordance with the MSDS for each chemical.

COMMUNICATION, SIGNAGE AND LABELING

All notices and signs must be displayed in the regional language as understood by a majority of the employees in the workplace. Prominent signs and labels of the following types shall be posted:

- Emergency telephone numbers
- Location signs for eyewash and head showers, fire extinguishers, spill kits and first aid kits
- Warning signs in areas or for equipment where special or unusual hazards exist

All chemical containers (irrespective of size or degree of employee familiarity familiarity) shall be labelled in the regional language as understood by majority of the workers. The label shall, at a minimum, contain the following information:

- Name of chemical (trade name and chemical name)
- Hazard warning (includes physical hazards, e.g., flammable, combustible liquid, compressed gas)
- Health hazards (e.g., corrosive, carcinogenic, toxic, etc.)
- Safety tips for handling or storing the chemicals (e.g. using gas masks and rubber gloves, etc.)

![Figure 8: Chemical Labelling](image)

The **Material Safety Data Sheet (“MSDS”)** shall be available for all chemicals with hazard classifications used in the factory. The MSDS is designed specifically for use in the workplace, and shall contain comprehensive information about each chemical present, providing Factories and workers with concise, relevant and accurate information to better understand the hazards, uses and risk management of each chemical product in the workplace. The content of a MSDS is standardized and contains 16 sections (see below):

1. Identification
2. Hazard(s) identification
3. Composition/ingredient information
4. First aid measures
5. Fire-fighting measures
6. Accidental release measures
7. Handling and storage
8. Exposure control and personal protection
9. Physical and chemical properties
10. Stability and reactivity
11. Toxicological information
12. Ecological information
13. Disposal considerations
14. Transport information
15. Regulatory information
16. Other information
All chemicals used shall comply with PUMA’s Manufacturing Restricted Substances List as detailed in the PUMA Sustainability Handbook – Chemicals Management.

INFORMATION AND TRAINING ON THE USE OF CHEMICALS

- Provide information and training on the use of chemicals to ensure that all individuals at risk are adequately informed about the work involving chemicals, its risks, and what to do if an exposure occurs. Hazard communication training is required of all employees who handle, transport, or use chemicals, or who work in areas where chemicals are stored.
- Relevant information shall be provided at the time of the employee’s initial assignment to a work area where hazardous chemicals are present or during the induction session, in the case of fresh recruits.

DISPOSAL OF CHEMICALS

- Because safely disposing of hazardous wastes can be time-consuming and expensive, every effort shall be made to limit the amount of hazardous wastes generated in the first place. Wherever possible, Factory Management shall plan processes carefully and order only what is required for production processes. Factory Management shall ensure that waste disposal (such as dry sludge from the effluent treatment plant, used machine oil, etc.) is conducted in strict accordance to the provisions of local law.
- Unwanted chemicals and related wastes shall be disposed of promptly, using appropriate disposal procedures. Such materials, as well as chemicals that are no longer needed, must not accumulate in the laboratory.
- Hazardous chemicals must be packaged for disposal as follows:
 - Containers must be suitable for contents (e.g. hydrofluoric acid in plastic bottles)
 - Containers must be tightly closed
 - Containers must not be overfilled (expanding vapors may cause containers to break)
 - Containers must not be damaged
 - Cracked caps must be completely sealed with plastic tape
 - Containers must be labelled properly

See the PUMA Forever Faster Sustainability Handbooks – Chemicals Management for more information.

10.3 Fire Safety

Fire is the most common type of emergency that can occur in a factory. Fires can be a subject of major concern and a danger to the workplace if appropriate safety measures are not strictly followed.

A fire safety management system for the workplace must be in place to ensure fire safety at all times and shall be comprised of the four (4) key elements summarized in the figure below.

This management system can be adapted for other emergency situations for the facility, as well.
10.3.1 Fire Equipment: Provision & Maintenance

Fire safety equipment must be provided in the factory in a manner that fulfils minimum legal requirements for what types of equipment are needed and in what quantities. This equipment must be readily accessible to employees (or authorized employees) at all times. Fire safety equipment may include, but is not limited to, the following:

PORTABLE FIRE EXTINGUISHERS

- Adequate number and type of portable fire extinguishers must be provided in every section of the Factory, based on the type of fire risk involved (see Table “Fire Extinguishers Types and Applications”) below for recommendations based on fire risk
- Only approved portable fire extinguishers shall be used to meet the requirements of this section
- The Factory shall ensure that portable fire extinguishers are maintained in a fully charged and operable condition
- Portable fire extinguishers must be kept in their designated places at all times, except during use

See next page.
Table 7: Fire Extinguishers Types and Applications

<table>
<thead>
<tr>
<th>FIRE CLASS & MATERIAL INVOLVED</th>
<th>CLASS “A”</th>
<th>CLASS “B”</th>
<th>CLASS “C”</th>
<th>CLASS “D”</th>
<th>CLASS “K”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Combustibles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.g. wood, paper, cloth, trash, and plastics.</td>
<td>e.g. gasoline, petroleum oil and paint.</td>
<td>e.g. wiring, fuse boxes, energized electrical equipment, computers, and other electrical sources.</td>
<td>e.g. magnesium, titanium, potassium, and sodium require special extinguishers labelled D.</td>
<td>e.g. animal fats and vegetable fats.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appropriate Fire Extinguishers Type</th>
<th>Water - Air-pressurized Water Extinguishers (APW)</th>
<th>Carbon Dioxide Extinguishers (CO2)</th>
<th>Multi-purpose - Dry Chemical Extinguishers</th>
<th>Water and foam fire extinguishers</th>
<th>Dry and wet Chemical Extinguishers for kitchen fires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT NOTES:
- DO NOT use water to extinguish flammable liquid fires or electrical fire. In case of electrical fire, the electrical equipment must be unplugged or de-energized before using a water extinguisher to address a fire.
- It is not recommended to use CO₂ for Class A fires. Class A fires may continue to smoulder and re-ignite after the CO₂ dissipates.
- DO NOT use CO₂ extinguishers in confined spaces where employees are working without providing them with proper respiratory protection.

FIRE ALARM CALLING POINTS

Source: http://www.femalifesafety.org/types-of-fires.html
Each floor or section of the Factory requires one or two fire alarm call points, which must be installed along aisles, escape routes, or near exits. The following specifications are also required:

- An electrically operated fire alarm system (battery backup must also be provided)
- A centralized wiring arrangement in each building so that all hooters are activated when any one of the call points is raised
- The system must produce a sound that is unique and distinct from any other bells used, such as the lunch bell or bell raised to signify the start or end of a shift

FIRE HYDRANTS, SMOKE DETECTORS AND AUTOMATIC SPRINKLER SYSTEM

- Fire hydrant points of appropriate number (as specified by local law) must be provided
- Smoke detectors and automatic sprinkler system needs to be provided (if required by provisions of local law)

OTHER FIREFIGHTING EQUIPMENT

When legally mandatory, the Factory must provide the following additional fire safety equipment:

- Sand and water buckets
- Manila rope
- Fire-resistant helmets, gloves, boots, and clothing
- Fire blankets

SPECIALIZED ESCAPE EQUIPMENT

Specialized escape equipment may be needed when fighting fires in specific conditions. Examples of specialized escape equipment include basic gear, such as harnesses, or larger equipment, including fire trucks. It is important to assess the feasibility and practicality of investing in such equipment, depending on the capacity of local firefighting authorities. Specialized equipment may be used only by fully trained and authorized personnel.

PERIODIC PREVENTIVE MAINTENANCE

All fire equipment must undergo regular preventive maintenance to ensure it remains in good working condition. The following protocol apply to periodic preventive maintenance:

- A preventive maintenance program shall be in place
- Procedures, protocols and accountability of preventive maintenance must be clearly documented and communicated
- Maintenance checks must be properly documented

See next page.
10.3.2 Internal Safety Teams

Depending on the size of the Factory, employees from every section shall be organized into different teams to handle exiting during an emergency, as detailed below.

Table 8: Internal Safety Teams

<table>
<thead>
<tr>
<th>Team</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Team</td>
<td>Members of the Communication Team are responsible for communicating the emergency to external bodies such as the fire brigade, calling for medical assistance, and other communication-related responses. The members of this team must be trained and informed about emergency numbers, preparing communications and calls during a fire, etc.</td>
</tr>
<tr>
<td>Firefighting Team/Fire Brigades</td>
<td>Firefighting Team members are responsible for stopping the fire, using available firefighting equipment like extinguishers, fire buckets, etc. Time is critical in any fire situation, so members of this team must be very well trained and be able to act decisively under time pressure. Though there are cases where facilities are equipped with comprehensive firefighting equipment (including fire trucks when local official firefighting capacity is ill-equipped or too distant), Firefighting Teams are not expected to be solely responsible for putting out a major fire. Where the capacity of local firefighting authorities may be inadequate or help is delayed, Firefighting Teams must only address the types of fire scenarios they are equipped and trained to manage.</td>
</tr>
<tr>
<td>Evacuation Team</td>
<td>The Evacuation Team is responsible for smooth evacuation of the Factory. This team would be trained in evacuation activities, such as aiding physically challenged workers, including pregnant women, the elderly, and persons with difficulties to evacuate. Because occupants of welfare facilities on-site, such as children in crèches and day care must be given highest priority, designated caretakers must be fully trained in evacuation, as well. The Evacuation Team is also responsible for ensuring that 100% of individuals inside the Factory and areas affected by the fire evacuate.</td>
</tr>
<tr>
<td>Medical Team</td>
<td>The Medical Team will be responsible for assessing the need for and providing first aid or additional medical care, as required.</td>
</tr>
</tbody>
</table>

All personnel, including subcontractors working in the facility, must be aware that only authorized and trained personnel shall perform specific safety functions. The safety policy and procedures must be taught to all personnel, including subcontractors, immediately after they begin, starting on their first day of work. No individual who has not received training shall participate in emergency response: well-intentioned employees attempting to handle certain kinds of emergencies may instead risk putting themselves and others in danger. For more information on training employees to respond to fire emergencies, contact PUMA’s Sustainability Team (see Appendix for contact information).

10.3.3 Evacuation Drills & Training

EVACUATION DRILLS

Once a Factory conducts a risk assessment and identifies potential emergency scenarios, an evacuation scenario for each shall be included in all emergency drills. Evacuation drills and fire safety training must be held periodically, according to local safety and labour laws. In the absence of local stipulations, PUMA requires that evacuation drills be held at least once per year. The objectives of these periodic evacuations include:

- Identifying any weaknesses in the evacuation strategy, as well as in emergency procedures and systems
- Testing the procedure after any recent changes in the factory layout, working practices, etc.
- Familiarizing new employees with evacuation procedures

Evacuation drills shall be conducted in a manner that includes all sections of the Factory. Wherever applicable, such drills shall be conducted separately at the dormitories, both during daytime periods and at night when workers are staying inside the rooms, to prepare all employees for evacuation in as many scenarios as possible.
The completion of evacuation drills shall be properly documented in the form of an evacuation drill log. The log shall record all necessary information, such as the number of employees and visitors present, time taken to achieve complete evacuation of all employees, etc.

The following guidelines shall be kept in mind before a drill is conducted:

- Communicate details regarding plans for the upcoming drill and inform employees of their duty to participate. It may not be beneficial to have ‘surprise’ drills as the health and safety risks that may arise may outweigh the benefits that an unexpected drill could yield. Ensure that this type of exercise is coordinated with the respective authorities.

- Ensure that emergency services (fire brigade, etc.) are aware that the drill will be taking place, and that they do not have to respond to the actions of the Communication Team. It would be beneficial if officials are present to observe the proceedings.

- Confirm that maintenance staff or service company representatives are available to restore services and plants (such as mains, boilers, generators, etc.) once the drill is completed.

FIRE SAFETY TRAINING

Basic fire safety training must be conducted periodically, provided to all employees during their orientation training, and conducted regularly thereafter. Minimum requirements for fire safety training include instruction on the following:

- Fire hazards at their workplace
- Evacuation route and exits
- Location fire alarm calling point or other alarm activation methods, as well as how to use it

Employees expected to be trained as members of any of the four (4) Firefighting Teams must receive annual training. Minimum training requirements include:

- Training on the use of fire extinguishers and other related equipment
- Training on communication needs during fire emergencies
- Training on providing specific first aid during fire emergencies

Specific physical and psychological requirements must be considered when identifying employees eligible for fire training (for example, an employee who is physically weak or mentally hesitant to fight fire shall not be trained or retained on the Firefighting Team).

10.3.4 Layout, Equipment, & Communication

The requirements for layout, fire equipment installation standards, and fire safety communication at all Factories are provided below:

LAYOUT

An exit route is a continuous and unobstructed path of exit travel from any point within the workplace to a designated assembly point. The following guidelines apply to all exit routes:

- There must be at least two (2) exit routes in every workplace to ensure the prompt evacuation of employees
- The location of exit routes must be as far away from one other as is practical so that if one exit route is blocked by fire or smoke, employees may evacuate using the second exit route
- An additional exit route is required inside the workplace if the number of employees, building size and occupancy, or the arrangement of the workplace will not allow all employees to evacuate safely through two (2) exit routes during an emergency
- All exit routes must meet the following minimum height and width requirements:
 - The ceiling must be at least at 2.3m high
 - The exit route must be at least 71.1cm wide at all points to maximize exit access. Where there is only one (1) exit access leading to an exit or exit discharge, the width of the exit and exit discharge must be at least equal to the width of the exit access
- Care must be taken to ensure that all exits are kept fully unobstructed, even temporarily, at all times

One exit is sufficient for rooms where less than 30 people work. The same applies to workplaces considered to have only one room, such as in open-plan mezzanine floors.
For exit route doors, the following requirements apply:

- Doors shall open outwards and will not open into aisles and walkways
- All doors shall have a width equivalent to at least the width of the stairs
- Under no circumstances shall doors be locked when any individuals are inside the building

For aisles and corridors, the following requirements apply:

- Main aisles shall be clearly defined using yellow lines. These yellow lines shall be continuous and lead to exits in a manner clear to all employees.
- Main aisles must be unobstructed (by anything that could impede movement, including unattended push carts, temporary workstations, cartons or piles of materials).
- Primary aisle width shall not be less than 1.1 meters. Secondary aisles shall have a width of at least 0.8 meters.

All stairways must be designed according to the following parameters:

- Stairway width shall not be less than 1.1 meters
- Stairs, platforms, landing, and other parts shall be made of incombustible material
- All stairways shall be kept clear of any obstruction
- Stairways shall lead directly to the street or any open space

EQUIPMENT

The installation of fire equipment installation must comply with all applicable fire safety laws in terms of numbers, types, and locations of all equipment.

COMMUNICATION

We provide below the requirements for fire safety signage and related communication. All signage and information related to fire safety must be provided and displayed in the regional language or the language understood by the majority of the workforce. Where a substantial number of workers present are not fluent in this language, all steps must be undertaken to ensure that all workers, including subcontractors, are given access to these resources in a language they can understand. All signage and information provided must be readable from a distance, and, wherever necessary, be posted at standard eye level. It is imperative that signage is not obstructed by any material to ensure it may be read by all workers. The following guidelines apply specifically to evacuation route plans and signage, respectively:

Evacuation route plans:

- Must be visibly displayed on every floor at or near exits or passageways
- Maps shall include:
 - Floor layout regarding machinery and workstation placement
 - Location of fire equipment, first aid kits, and all exit/emergency exit points
 - Arrows showing the direction of the closest exit or emergency exit
- Map size shall be sufficient to be read from a distance of two (2) meters
- Where it is not feasible or practical to have legible evacuation maps posted in all sections of a facility (for example in large warehouse facilities), escape arrow markings, or other indicators shall be used

Signage:

- Position marking with respect to all fire equipment is required, including pictures and words (on walls, red marks on pillars, etc.)
- Usage instructions must be posted in close proximity to fire equipment
- Every major section of the Factory requires information on fire emergency precautions, protocols and instructions
- Every section of the Factory must display the phone numbers that can be used to seek help during fire emergencies
• A restriction box must be marked on the floor under each fire extinguisher, so that no object is placed there and it stays free of obstructions at all times. The purpose of the restriction box shall be explained to all workers.

10.4 Emergency Preparedness & Response – Natural Disasters

A natural disaster is defined as a major event caused by natural processes. Given recent environmental and socio-political pressures and volatility, there has been a global increase in natural disasters, which underscores the importance of having an emergency response plan in place to anticipate these types of events. This section provides an overview of different types of natural disasters, as well as our policies for enhancing factory emergency response plans to keep workers safe during each type.

Emergency situations that arise from natural disasters and threaten health and safety require awareness, preparation, and response plans. Emergency response procedures must be established, understood, communicated and tested (e.g. through conducting drills, notifying fire-fighters, identifying meeting points, evacuation routes, emergency doors, installing alarms, etc.) to maximize workplace safety and minimize danger of harm during emergencies. The efficiency of these procedures shall be evaluated for continuous improvement.

PUMA recommends that Factories consult with emergency organizations (such as the Red Cross and Crescent), as well as with local authorities and experts, for assistance and instructions to ensure they are prepared for natural disasters that may occur in their regions. Types of natural disasters that may threaten safety at Factories include floods, earthquakes, tornadoes, typhoons, and tsunamis. Each requires specific preparedness procedures to be in place, and Factories must understand how each could affect their workplace in order to respond and prepare in a manner that minimizes exposing employees to safety risks.

10.5 Contractor Safety

A Contractor is defined as a company that provides services (both physical/non-physical work) for a Factory. Contractor Safety plans are designed by the Factory to ensure that safety aspects during work for both the Factory and Contractor are respected. The goal of this safety measure is to protect factory and contractor employees, equipment, as well as the image and reputations of both companies.

There are four (4) steps that a Factory must take prior to appointing a contractor: a risk assessment, selection, training, and establishing a contract. The below subsections provide details on the requirements involved for each of these four steps:

10.5.1 Risk Assessment

In order to ensure safety in all aspects of work with a Contractor, the Factory shall develop a risk assessment to identify the risk area of potential work with a Contractor.

10.5.2 Selection

Prior to appointing a Contractor, the Factory shall take into account the following:

• The reputation of the Contractor company regarding its use of, or participation in, safety programs
• Personnel qualifications

10.5.3 Training

Training is one of the most important elements of the Contractor selection process. Contractor workers, even those already qualified, shall be trained to understand and abide by the Factory’s specific safety requirements. In most cases, Factories only check whether the Contractor’s employees obtained certain certificates, but safety measures are unique in every field given the diverse different risks of different types of work. Based on the results of the risk assessment mentioned above, a Factory shall deliver proper training to Contractor employees and ensure their understanding of all training material.
For specialized work that the Contractor may be experienced with but the Factory safety personnel is not familiar with, the Factory must ensure that the Contractor performs the risk assessment and subsequent follow-up actions accordingly.

10.5.4 Contract Stipulations

The Factory must include Safety Provisions in the contract with the Contractor, in order to ensure that the Contractor is legally obligated to follow Factory safety standards during the course of its work.

Table 9 provides several examples of Contractor work that may take place in the Factory, alongside potential safety hazards and measures for enhancing safety and reducing risk.

<table>
<thead>
<tr>
<th>WORK PROCESS</th>
<th>SAFETY ISSUES</th>
<th>SAFETY MEASURE</th>
</tr>
</thead>
</table>
| **Construction Work** | Falling | • Wear harness to prevent freefall
• Create perimeter and provide signage in the area to indicate falling hazard where applicable
• Ensure that any openings on the ground are covered
• Provide proper climbing device (such as ladders and scaffolds) |
| | Electrocution | • Clearly identify the area with electricity by erecting visible signage
• Wear proper safety footwear inside the area where high electricity currents may be present
• Only use electric tools when grounded or double insulated
• Keep away from all electricity sources |
| | Struck – By | • Wear protective clothing (such as a helmet)
• Wear clearly visible clothes when working near moving vehicles |
| **Hot Work** | Fire | • Ensure that hot work is conducted only in designated areas
• Fire extinguisher shall be kept as near as possible to hot work areas
• Create perimeters around hot work areas. Hot work areas must be at least 11 meters (35 feet) from combustible material
• Ensure that hot work operators have all required hot work permits from the relevant department |
| | Burns | • Provide proper personnel protective equipment and clothing |
10.6 Walking and Working Surfaces

Walking and working surfaces, such as floors, stairs and ladders, all create circumstances that expose workers and anyone else present to a risk of a slip, trip, or fall that may cause injury during work or in the workplace. These circumstances include those in which the worker or other person is:

- In or on a plant or a structure that is at an elevated level
- In or on a plant that is used to gain access to an elevated level
- In the vicinity of an opening through which a person could fall
- On or in the vicinity of a surface through which a person could fall
- On or near the vicinity of a slippery, sloping or unstable surface
- In or on a plant or a structure that is at an elevated level
- In the vicinity of an edge over which a person could fall

10.6.1 How to Identify Slip/Trip/Fall Hazards

INSPECT THE WORKPLACE

Identify all locations and tasks that could cause injury due to a slip/trip/fall. Walk around the workplace and talk to workers to find out where work is carried out that could result in slips/tripsfalls. Tasks that need particular attention are those carried out in the following situations:

- On any structure or plant being constructed or installed, demolished or dismantled, inspected, tested, repaired or cleaned
- On a fragile surface (such as cement sheeting roofs, rusty metal roofs, fiberglass sheeting roofs, and skylights)
- On a potentially unstable surface (such as those where there is potential for ground collapse)
- Using equipment to work at an elevated level (e.g. using elevating work platforms or portable ladders)
- On a sloping or slippery surface where it is difficult to maintain balance (e.g. on glazed tiles)
- Near an unprotected open edge (e.g. near incomplete stairwells)
- Near a hole, shaft, or pit into which a worker could fall (such as trenches, lift shafts, or service pits)
- Near a hole, shaft, or pit into which a worker could fall (such as trenches, lift shafts, or service pits)

A checklist may be useful in this process. The following list provides recommendations of key risk factors to look for:

- **Surfaces:**
 - The stability, fragility or brittleness
 - The potential to slip (e.g. where surfaces are wet, polished or glazed)
 - The safe movement of workers where surfaces change
 - The strength or capability to support loads
 - The slope of work surfaces, for example, where they exceed seven (7) degrees
- **Levels:** where levels change and workers may be exposed to a fall from one level to another
- **Structures:** the stability of temporary or permanent structures
- **The ground:** the evenness and stability of the ground for safe support of scaffolding or a work platform
- **The working area:** whether it is crowded or cluttered
- **Entry and exit from the working area**
- **Edges:** protection from open edges of floors, working platforms, walkways, walls or roofs
- **Holes, openings, or excavations** that require guarding
- **Hand grip:** places where an individual’s hand grip may be lost

In some situations, expert advice may be needed from technical specialists, such as structural engineers, to check the stability or load-bearing capacity of structures.
REVIEW AVAILABLE INFORMATION, INCLUDING INCIDENT RECORDS

Check the records of previous injuries and Near-Miss incidents related to falls. Information and advice about fall hazards and risks relevant to particular industries and work activities may also be available from regulators, industry associations, unions, technical specialists, and safety consultants.

10.6.2 How to Control Slip/Trip/Fall Hazards

There are a number of ways to control the risks of falls. Some control measures are more effective than others. Control Measures can be ranked from the highest level of protection and reliability, to the lowest using the Hierarchy of Control.

QUESTIONS MODEL

The following questions model the process of moving through the Hierarchy of Control to arrive at the best solutions given the risk and its holistic circumstances.

1. Can the need to work at height be avoided to eliminate the risk of a slip/trip/fall?
2. Can a slip/trip/fall be prevented by working on solid construction?
3. Can the risk of a slip/trip/fall be minimized by providing and maintaining a safe system of work, including the following options:
 - Providing a fall prevention device (e.g. installing guard rails) if it is reasonably practical to do so
 - Providing a work positioning system (such as an industrial rope access system) if it is not reasonably practicable to provide a fall prevention device
 - Providing a fall-arrest system, so far as is reasonably practicable, a fall prevention device or a work positioning system is not an option
 - Providing covers and/or guardrails to protect workers from the hazards of open pits, tanks, vats, ditches, etc.

ELEVATED HEIGHT HAZARD CONTROLS

Whenever fall protection is needed, ensure that the correct fall-protection system is in place. In some cases, a combination of control measures may be necessary, such as using a safety harness while working from an elevating work platform. The following safety measures apply to work at elevated surfaces:

- Any walking and working surface located above 4 ft. (1.22 m) must include protections to keep workers from the possibility of a fall
- Workers who are assigned to work on elevated work surfaces (over 6 feet) shall understand and follow required safety work practices
- Holes in floors, raised platforms, and openings in elevated walls must have fall protection devices in place such as railings, covers, fencing, or doors to protect workers from a fall

ELEVATED HEIGHT HAZARD CONTROLS – LADDER SAFETY

- Choose the proper equipment. Use ladders primarily for climbing to or from other levels.
- Choose the right ladder length for the job.
- A sticker on a commercial ladder indicates its maximum weight capacity. Use only type I, IA, or IAA ladders (see Table 10 below). If safety-tested ladders are not locally available, the Factory must then take responsibility for weight-capacity testing. Ladder rungs, cleats, and steps must be parallel, level, and evenly spaced.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DUTY RATING</th>
<th>USE</th>
<th>LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAA</td>
<td>Special Duty</td>
<td>Rugged</td>
<td>375 lbs</td>
</tr>
<tr>
<td>IA</td>
<td>Extra Duty</td>
<td>Industrial</td>
<td>300 lbs</td>
</tr>
<tr>
<td>I</td>
<td>Heavy Duty</td>
<td>Industrial</td>
<td>250 lbs</td>
</tr>
</tbody>
</table>

- The rungs and steps of metal ladders must be grooved or roughened to minimize slipping. Side rails must be at least 11.5 inches apart.
• If using two (2) or more ladders to reach one location, there must be a platform or landing between the ladders.
• Ladder parts must be smooth to prevent punctures, cuts, or snagging of clothing.
• Wood ladders must not be painted with a coating that can hide defects.
• For stepladders, all four legs must be on solid, level ground. The spreaders must be locked fully open.
• Climbing on the cross-bracing is prohibited. Stepladders shall never be leaned against a wall.
• For straight and extension ladders, the ladder base shall be one (1) foot from the building (or top support, such as an eave) for every four (4) feet of ladder length up to the resting position. Counting rungs provides a good estimate of the ladder length, as rungs are about one foot apart.
• When working from or climbing a ladder, workers shall stay positioned between the rails of the ladder.

![Wrong Way and Right Way](image)

Figure 10: Best Practices for Using a Ladder

Where eliminating the hazard and guardrails or where safety nets may not work personal protective equipment (PPE), such as fall-restraint systems personal fall-arrest systems are required. Restraint systems keep individuals from falling and fall arrest systems stop falls. Those using either system need to wear a full-body harness, which has straps worn around one's torso and thighs, with one (1) or more rings in back to attach the harness to other parts of the fall-protection system.

ELEVATED HEIGHT HAZARD CONTROLS: HARNESSSES

• Learn about the types of slip/trip/fall hazards that workers may be exposed to.
• Make sure the harness fits all who wear it and that is comfortable, to prevent body strain. Employees can be given shoulder and back pads to reduce harness pressure. Full-body, cross-chest, harnesses are more comfortable for women and can reduce the bruising that may arise during use.

ELEVATED HEIGHT HAZARD CONTROLS: TRAINING

Training must cover responses to all conceivable outcomes from working at elevation, such as hanging in a harness and rescue.

• The Factory must fit and train each worker using each piece of the equipment.
• Workers at risk of falling must be trained about types of fall hazards, how to protect oneself, and about any relevant hazards and limitations in using fall protection.
• If the worksite changes or the type of fall protection equipment is changed, workers using the equipment must be retrained in alignment with all new circumstances.

10.7 Safety Signage

All safety signage shall be displayed in the local language and be understandable to as many employees as possible. This signage shall be used to:

• Indicate the location of safety facilities (e.g. emergency escape or first aid signage)
• Warn of special dangers or hazards (e.g. a warning signage)
• Demand a mandatory action (e.g. a mandatory signage)
• Forbid some action (e.g. a prohibition signage)

Depending on the purpose they serve, a specific colour, shape, and size is required to help convey their meaning. The European Union has set minimum requirements for the provision of health and safety signage within the directive 92/58/EEC. In this Directive it is clearly stated that:

• “Employers shall provide safety and/or health signage as laid down in this directive where hazards cannot be avoided or adequately reduced …” and
• “Workers must be given suitable instruction, in particular in the form of specific directions concerning the safety and/or health signage used at work”.

Further legislation concerning health and safety signage can be found in the directive 89/391/EEC, which stipulates that all emergency exits and firefighting equipment be permanently marked with signage for ease of access and use. For non-EU countries, other legislation may be applicable, and PUMA mandates that full compliance is required.

REQUIRED COLOR & SIGNBOARD USE

• **Color** – The table below provides an overview of each color option for the creation of signage, what each color signifies, and examples of applications for each color.

<table>
<thead>
<tr>
<th>RED: Prohibition</th>
<th>YELLOW OR AMBER: Warning</th>
<th>BLUE: Mandatory</th>
<th>GREEN: Emergency escapes, first aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prohibiting behaviour, danger alarm, stop, shutdown, emergency cut-out devices, evacuate, fire-fighting equipment, identification and location</td>
<td>Be careful, take precautions, examine</td>
<td>Specific behaviour or action, wearing personal protective equipment</td>
<td>Exit doors, exits signal, escape routes, rescue facilities, no danger, return to normal</td>
</tr>
</tbody>
</table>

• **Signboards** – Signboards used at workplace must be sufficiently large, visible and easily understandable in the applicable local language. All signboards require adequate illumination, and their size shall be appropriate for the intended viewing distance. Signboard material must be durable and weather-resistant, securely fastened and properly maintained.

Appendix H provides examples of the different signage required in each category for a variety of relevant circumstances.
Sec. 11 – Occupational Health & Sanitation Management

In order to control exposure to hazards within the workplace, a sufficient management system shall be established and implemented. This shall include, at minimum, the following components:

- A description of the plan and a functional overview of the day-to-day operation. This section must contain a detailed description of this site, the location of buildings, and to what structures and organizations the plan applies.
- Based upon the results of the evaluation and assessment survey, workplace monitoring shall be conducted to determine the level of exposure and potential health risk to employees.
- Employees shall be trained properly in risks and control measures to mitigate their potential effects.
- Monitoring data shall be analysed and reviewed at regular intervals and compared with the operating standards so that any necessary corrective actions can be taken.

11.1 Workplace Monitoring

- Regular workplace monitoring is a critical component of every successful health and safety program. Each monitoring instance shall include a careful examination of the workplace to identify potential (or actual) hazards that can cause injury, illness or damage.
- To ensure the effective monitoring, it is necessary to be familiar with:
 - All workplace buildings and departments
 - Work activities and workflow from one part of the workplace to another
 - Locations where hazardous chemicals are used
 - Locations of storage areas, entrances and exits, and emergency exits
- Workplace monitoring must be conducted by the local Center for Disease Control and Prevention or a qualified organization at least once per year. Any new construction, new equipment or work activities that are introduced to your workplace must complete an additional initial risk assessment, and workplace monitoring of the changes shall be conducted as well.

11.1.1 Limit of Hazardous Substance Exposure

Most workplace exposure limits are set in terms of concentrations of the substances hazardous to health in the air, averaged over a specified period of time (i.e. a time-weighted average). **Two different time periods are used: long term (8 hours) and short term (15 minutes).** Short-term exposure limits are set to prevent acute effects, which occur after exposure for just a few minutes. Exposure to a substance with a workplace exposure limit must not exceed the local legal requirement for either short-term or long-term exposure.

11.1.2 Limit of Noise Exposure

Because the negative impacts on health of noise are cumulative, noise emission levels shall be kept **below 85 dB(A)** to minimize any risks to health. In cases where this is not feasible, noise emission levels shall be reduced to the lowest level possible and suitable hearing protection must be provided. The following requirements for noise levels apply in each of these scenarios:

See next page.
• Levels of 55 dB(A) during complex office work as well as canteen and break areas
• Levels of 70 dB(A) during simple office work
• Levels at or below 85 dB(A) during all other kinds of work
• Individuals exposed to 80dB(A) or above must be offered hearing protection, but at 85dB(A), hearing protection use must be mandatory.

Hazard exposure within the workplace must be in compliance with local legal requirements. It is recommended that noise exposure testing for prolonged exposure (the standard time allotment is eight (8) hours) and peak exposure testing be conducted so that both types of exposure in the work stations are measured, even if both may not be required by local law. Where PUMA standards are more stringent than local legal requirements, PUMA standards will apply.

• If the noise energy in a given situation is doubled, then it is increased by 3dB(A) and requires a halving of the exposure time. Please refer to the below table for exposure time limits for different sound levels.

<table>
<thead>
<tr>
<th>HOURS OF EXPOSURE (H)</th>
<th>dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>1/2</td>
<td>97</td>
</tr>
<tr>
<td>1/4</td>
<td>100</td>
</tr>
<tr>
<td>1/8</td>
<td>103</td>
</tr>
</tbody>
</table>

Table 12: Noise Exposure and dB(A)

11.1.3 Lighting

• Where various production processes take place in the Factory, sufficient lighting provided for workers is of utmost importance.
• Depending on the processes, light levels or lux can be classified in relation to the type of work, nature of workplace, the vision of each individual, and other factors.
• Lack of, or excessive, light can result in accidents, affect workers’ wellbeing and diminish productivity of workers during production. In work where accuracy is required, such as quality control, this can affect the product quality. Over time, workers who conduct their work under excess or insufficient light risk damaging their eyesight. Given these considerations, PUMA provides in Table 13 the following recommendations for the amount of light required given different types of work:

Table 13: Light Recommendations

<table>
<thead>
<tr>
<th>TYPE OF WORK</th>
<th>ILLUMINATION RANGES (LUX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work space where visual tasks are performed occasionally</td>
<td>100 – 200</td>
</tr>
<tr>
<td>Tasks with high contrast of large scale</td>
<td>200 - 500</td>
</tr>
<tr>
<td>Tasks of medium contrast or small size</td>
<td>500 – 1000</td>
</tr>
<tr>
<td>Tasks of low contrast or very small size</td>
<td>1000 – 2000</td>
</tr>
<tr>
<td>Tasks of low contrast and very small size over a prolonged period</td>
<td>2000 – 5000</td>
</tr>
<tr>
<td>Tasks of very prolonged and exacting visual tasks</td>
<td>5000 – 10000</td>
</tr>
</tbody>
</table>

11.1.4 Vibration

• Machinery used in the factory for production almost always exposes workers to some degree of vibration. Prolonged exposure to vibration can cause injuries over time.

HAND-ARM VIBRATION (HAV)

- Hand-arm vibration (“HAV”) exposure results from the use of handheld power tools. Excessive and uncontrolled use of these types of tools can cause health problems, such as painful nerves and joints, and may also lead to direct injuries to fingers, hand dexterity, and the ability to grip. The following table shows the threshold value of HAV:

<table>
<thead>
<tr>
<th>Total Daily Exposure Duration (Hours)</th>
<th>Maximum Value of Frequency Weighted Acceleration (M/S²) In Any Direction*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to less than 8 hours</td>
<td>4</td>
</tr>
<tr>
<td>2 to less than 4 hours</td>
<td>6</td>
</tr>
<tr>
<td>1 to less than 2 hours</td>
<td>8</td>
</tr>
<tr>
<td>less than 1 hour</td>
<td>12</td>
</tr>
</tbody>
</table>

To reduce the risk of occupational disease caused by HAV, the following steps may be taken:

- Find alternative work methods that eliminate or reduce exposure to vibration.
- Select the vibrating equipment correctly to ensure that any vibrating equipment is used efficiently. Improper equipment for a given task may result in longer and inefficient use of the equipment, exposing workers to vibration longer than necessary.

11.1.5 Extreme Temperatures

Heat or cold stress refers generally to several medical conditions such as heat cramps, heat exhaustion, heat rash, heat stroke, frostbite and hypothermia. Under extreme conditions of temperature, humidity, airflow, and workload, workers may experience heat or cold stress, which is the body's attempt to maintain a normal body temperature in extreme temperatures.

Factory conditions that are very hot or very cold may cause workers to suffer from a variety of heat or cold stress symptoms. Heat stroke from extreme heat and hypothermia from extreme cold, are both conditions that may lead to death if not treated immediately. Workplaces with risks for these conditions may include, but are not limited to: casting, electroplate, rubber products factories, electrical utilities (particularly boiler rooms), laundries, and chemical plants.

<table>
<thead>
<tr>
<th>HEAT INDEX</th>
<th>RISK LEVEL</th>
<th>PROTECTIVE MEASURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 91°F (32 °C)</td>
<td>Lower (Caution)</td>
<td>Basic heat safety and planning</td>
</tr>
<tr>
<td>91°F – 103°F (32 °C – 39 °C)</td>
<td>Moderate</td>
<td>Precautions and heightened awareness</td>
</tr>
<tr>
<td>103°F – 115°F (39 °C – 46 °C)</td>
<td>High</td>
<td>Additional precautions to protect workers</td>
</tr>
<tr>
<td>> 115°F (46 °C)</td>
<td>Very high to Extreme</td>
<td>Triggers even more aggressive protective measures</td>
</tr>
</tbody>
</table>

* Modified from The American Conference of Governmental Industrial Hygienists (ACGIH)
* Directions of axes in the three-dimensional system
Ensuring worker safety in extremely hot or cold temperature conditions shall respect all local legislation and must include implementing, at minimum, the following risk mitigation procedures:

- Identify workplace and work assignments where a potential for heat or cold exists.
- Satisfactory temperature control measures to eliminate or reduce risks.
- Proper personal protective equipment (PPE) must be provided to workers who work in operations involving extreme heat or cold (e.g. insulated gloves, insulated suits, reflective clothing, or infrared reflecting face shields etc.).
- Plenty of safe drinking water must be available for workers, free of charge, who work in areas with high temperatures (near ovens, dryers, etc.).
- Rest breaks must be sufficiently frequent and held in suitable conditions given the temperatures (e.g. located in warm area if temperature conditions are extremely cold, in shaded or cooler area if temperature conditions are extremely hot).
- Workers must have a physical exam that confirms fitness to work in extreme heat or cold before begins work in such conditions.
- Workers who work in extremely hot or cold environments shall be trained to recognize, and respond to, symptoms of heat or cold stress.
- Capable workers shall be trained to provide first aid to any workers who experience these symptoms.
- Periodically evaluate the program to determine its effectiveness in preventing heat or cold stress in workers.

A heat or cold stress prevention program must be established in order to reduce the risk associate with heat or cold stress, including illnesses and injuries, which may include (but not be limited to) the following elements:

- Designating responsibilities for running and managing the program.
- Water replenishment during shifts, as needed.
- Ensuring employee access to shade at all times for preventative recovery periods.
- Responding to symptoms of possible temperature-related illness.
- Contact providers of emergency medical services.
- Ensuring effective engineering controls, including ventilation, heaters, air conditioning, cooling fans, and reflective shields to redirect radiant heat and insulation.
- Allow new workers to have a five-day period to adjust to extreme temperature conditions. Similarly, provide a five-day adjustment period to workers who have been away from work for two weeks or more.
- Where there is a chance that workers could suffer heat stress caused by hot equipment, workers shall wear clothing that reflects heat (such as aprons, jackets, suits, etc.). Any reflective clothing shall be worn loosely to enhance ventilation. Workers wearing such clothing must be cautious to avoid having such clothing catch in any machines being used.
- Avoid or limit the use of alcohol and caffeine during times of extreme heat due to their dehydrating effects.

11.2 Ergonomics

Ergonomics is the scientific study of human performance at work. Ergonomics considers the physical and mental capabilities of the worker and how he/she interacts with tools, equipment, work methods, tasks, and the working environment. Ergonomic hazards must be controlled when designing or updating workplaces or workstations, and in these circumstances the following procedures shall apply:

- **Conduct a risk assessment**: The assessment shall identify jobs and workstations that may contain musculoskeletal hazards, the risk factors posed by these hazards, and the causes of the risk factors.
- **Hazard prevention and control**: Eliminate or minimize the hazards identified in the workplace assessment by changing the job design, workstation, tools, or work environment to fit the worker.
- **Injury management**: Make effective use of available healthcare resources (e.g. physiotherapy and medical help) to prevent or manage work-related musculoskeletal disorders using an early-intervention approach.
- **Training and education**: Provide both staff and supervisors with an understanding of the potential risk of injuries, their causes, symptoms, prevention, and treatment options.

Below are some common ergonomic hazards present in the workplace:
• Inadequate or excessive light or glare
• Heavy, awkward or repetitive lifting, pushing or pulling
• Frequent bending or twisting of the back or neck
• Tasks requiring lifting either below the knees or above the shoulder
• Static postures where workers spend long periods without movement of a particular body part
• Working with arms above shoulder height, elbows away from the body, or reaching behind the body
• Repetitive or prolonged grasping and holding of objects, or repetitive bending or twisting of the wrists or elbows

• Frequent exposure to whole-body or hand-arm vibration that has not been controlled
• Work surfaces that require elevation of the shoulders or stooping of the back for long periods
• Contact stress, where force is concentrated on a small area of the body

Low-cost solutions to control ergonomics in the workplace may be applied to correct these risk factors, as follows:

• Ensure work surfaces are at the right height for the task required
• Store frequently-used materials, parts, or tools within easy reach and as close to waist or hip height as possible
• Use mechanical aids to move materials and products around the workplace
• Avoid extended or repeated long reaching to do work. Typically using an awkward posture beyond four (4) hours per day is considered high-risk
• If possible, reduce the number of times workers repeat a given task or motion

• Provide seated workers with chairs of correct height that include sturdy backrests, allowing feet to be comfortably placed on the floor
• Provide a standing chair or stool
• Encourage workers to change work postures occasionally, from standing to sitting or vice versa
• The most effective ergonomic solution is to involve both the workers and Factory Management in coming up with optimal solutions for each work setting. Where local laws on ergonomics are applicable, factories are expected to comply with all legal requirements.

11.3 Industrial Ventilation

Ventilation in workplaces can include both general ventilation (i.e. fresh air) and targeted ventilation used to control airborne contamination of the workplace. General ventilation of a building is needed to satisfy the respiratory needs of its occupants and remove any body odors and other indoor environmental contaminants. **The Factory must take effective and suitable steps to ensure that every enclosed workplace is ventilated by a sufficient quantity of fresh or purified air.** Ventilation used to control airborne contamination can take one of two forms: dilution ventilation, or local exhaust ventilation (“LEV”). The following subsections below provide detail.

11.3.1 Dilution (General) Ventilation

Dilution ventilation provides a flow of air into and out of the working area, rather than targeting ventilation at the source of the contaminant. The background concentration of airborne contaminants is reduced by the addition of fresh air but there is little, if any, reduction in direct exposure to airborne contaminants. This system is used in cases where local exhaust ventilation is impractical.
Dilution ventilation is more effective if the location of the exhaust fan is close to exposed workers and the makeup air location is behind the workers so that contaminated air is drawn away from the workers' breathing zone. For chemical control in the workplace, this approach is suitable in circumstances where the volume of pollutants generated is not too high, and workers are not exposed or required to work near the source of contamination. **Limitations of dilution ventilation include:**

- It does not remove completely contaminants,
- If contaminants are highly toxic or very flammable, dilution ventilation is not recommended
- Mechanical ventilation systems shall be regularly cleaned, tested, and maintained. Where necessary for reasons of health and safety, plant failure warning devices must be provided.

In general, the fresh air supply rate **shall not fall below 5-8 liters per second, per occupant**. Factors that may influence fresh air requirements include the floor area per person, the processes and equipment involved, and whether the work is strenuous.

11.3.2 Local Exhaust Ventilation ("LEV")

Unlike dilution ventilation, which seeks to spread airborne contaminants throughout the workplace to reduce their capacity to harm, LEV controls air contaminants by trapping them at or near their source. In protecting workers’ breathing zones and subsequent health, LEV is best for controlling highly toxic contaminants before they are able to spread within the workplace. Given this action mechanism, LEV is best for the following applications:

- Removing air contaminants can cause serious health risk
- Use when the location of emission source is close to workers
- The number of emission sources at the workplace are low
- When cost is a concern if heating or cooling cost is increased in cold or hot weather
- When large amounts of contaminants are generated

An LEV system has five (5) basic components:

1. A hood, enclosure, or other inlet collects and contains the contaminant close to the source of its generation
2. Ductwork pulls the contaminant away from the source
3. A filter or other air-cleaning device removes the contaminant from the extracted airstream
4. A fan or other air-moving device provides the necessary air flow
5. Further ductwork discharges the cleaned air to the outside atmosphere at a suitable point

![Diagram of LEV components](image)

Figure 12: Five basic components of LEV

See next page.
Regular maintenance and testing programs must be developed and maintained to ensure the LEV systems meet workplace requirements. Records of maintenance and testing shall be kept at the workplace and made available during compliance checks.

11.4 Personal Protective Equipment (“PPE”)

Each year, significant numbers of workers around the world experience disabling work-related injuries. Personal Protective Equipment (“PPE”) is one defense against exposure to hazardous working conditions that can cause such injuries. Equipment selection shall take into account the work environment, an employee’s individual needs and the larger context in which the work is taking place.

PPE is designed to protect workers from health and safety hazards that cannot be practically removed from the work environment through engineering or administrative controls. All workers are required to use PPE whenever it is specified, or when work conditions require it. Workers’ acceptance of incorporating PPE into their daily work patterns is higher when employees fully understand the purpose of the PPE and are involved in the selection process of the most suitable equipment.

General requirements for the selection of, and training for, PPE include:

- Performing a hazard assessment to select the appropriate PPE
- PPE must meet standards established by recognized governmental and/ or industry groups
- Train the workers in the following PPE-related areas:
 - When PPE must be worn
 - How to wear and adjust PPE
 - The limitations of the PPE
 - The proper care, maintenance, use, and disposal of PPE

Commonly used PPE in the sporting goods industry include, but is not limited to:

- Gas masks in work areas where harmful vapors are present
- Dust masks used in processes where dust is generated
- Steel mesh gloves when using fabric cutters
- Ear protectors for work areas with high levels of noise
- Chemical-resistant gloves for handling acids or caustic chemicals
- Hydrocarbon-resistant gloves for using hydrocarbon-based solvents, cleaning agents, or chemicals
- Foot protection when handling heavy objects

11.5 Occupational Health Practice: Health Surveillance, Medical Care, and First Aid

11.5.1 Health Surveillance

Health surveillance is defined as the periodic monitoring of the health of individual workers through a combined assessment of medical history, an examination, and relevant tests. The types of examinations and tests used during health surveillance will depend on the health hazard being assessed.

Health surveillance is **not a substitute** for providing and maintaining adequate exposure control measures and shall include special measures and procedures to ensure that vulnerable workers (such as pregnant women) are **never** exposed to any hazardous conditions at work.

The health surveillance program shall be linked to, or cover, the following healthcare-related requirements for all employees:

- The pre-employment screen
- Pre-placement and post-placement examinations
- Return-to-work examinations
- Exit health examinations
- Health surveillance must be conducted in the following circumstances:
- When required by regulations
- If it is possible that worker exposure to a given hazard exceeds acceptable exposure limits to that hazard
- If a Factory wishes to check the health of their workforce and assess the effectiveness of hazard management and control measures
- If hazard exposure has been consistently shown to remain well below acceptable exposure limits, there is no need for health surveillance for a particular workplace hazard

HEALTH SURVEILLANCE PROGRAM – GUIDELINES

If health surveillance is required, the Factory shall establish a structured health surveillance program that aligns with the following guidelines:

- The program shall be documented as part of the Standard Operating Policies and Procedures
- The program shall be designed based on the results of the health risk assessment
- Workers shall give their informed consent to participate in health surveillance
- All health surveillance examinations and tests shall be conducted at no cost to the worker
- Medical examinations and tests shall be supervised by a legally qualified physician (or nurse, where appropriate)
- Examinations, tests, and all laboratories involved shall comply with relevant international standards
- Medical examinations and tests must be safe, ethical, and acceptable in cultural and religious terms
- Tests must be valid, reliable, and sensitive
- Where health surveillance detects disease, adverse health effects or unsafe hazard exposure levels, the responsible physician or nurse must advise the Factory of the need for remedial action, and immediately notify the worker of the result and its implications for him or her
- Depending on the nature of the abnormal result and the circumstances in the workplace, the affected worker shall either be suspended stating the expected length of unfitness, given specific restrictions to mitigate further hazard exposure, moved to a workplace that is safe for him or her, or given additional PPE
• Workers requiring treatment for diseases found during health surveillance shall be referred to appropriate specialists for any follow-up needed

HEALTH SURVEILLANCE PROGRAM – ANALYZING AND REPORTING RESULTS

A procedure shall be developed and implemented for analysing the results of the health surveillance program and providing guidance for corrective action and medical treatment.

• This analysis shall identify patterns and trends for groups of workers across the Factory, as well as assess clinical implications for all individual workers affected or in need of further treatment.

• The occupational health doctor or nurse shall indicate which employees are considered fit to work and which are not. These occupational health staff shall also be mindful that abnormal results on a health surveillance examination may not be due to work, but instead to other factories or situations that would have transpired in the absence of workplace exposure. Abnormal results may require follow-up medical treatment outside of the factory’s occupational health service.

HEALTH SURVEILLANCE RECORDS

Health surveillance results shall be managed as any other medical record within the occupational health service. Individual results for each worker shall be kept in his or her medical record, so they are available for the doctors and nurses treating the employee.

11.5.2 Medical Care

The following medical resources shall be made available for all employees at the Factory:

• A medical care program to address both physical health and mental health

• An emergency preparedness program for local endemic illnesses

• Suitable medical facilities must be available, open and properly maintained. It is essential that the facility is kept clean and equipped to deal with any injuries common to the type of factory. Proper procedures for disposal of medical waste must be followed

• A contract or insurance cover with the nearest hospital for emergency treatment of workers shall be in place

11.5.3 First Aid

First aid is defined as emergency care provided for an injury or sudden illness before professional emergency medical treatment is available. The first aid provider in the workplace is trained in the delivery of initial medical emergency procedures, using a limited amount of equipment to perform a primary assessment and intervention while awaiting arrival of emergency medical service (“EMS”).

Sufficiently trained first aid providers must be available at all times and in every major department of a factory. Depending on the size of the factory and the nature of its activities, between 5 and 10% of the workforce shall receive first aid training. A clinic or first aid room shall be made available for Factories with more than 100 employees. The first aid room shall adhere to the following guidelines:

SPACE, LOCATION, & EQUIPMENT

• The room shall be clearly marked as a first aid room and a note shall be placed on the door clearly, showing the names and locations of first aid providers.

• Directions to the hospital, phone numbers of ambulances, and other contact information must be displayed in the room in cases with more serious injuries.

• The room shall be large enough to hold a bed or couch, and the door to the room must be wide enough to accommodate a stretcher, wheelchair, carrying chair or wheeled carriage. And it shall contain:
A bed or a couch (with a waterproof surface) with clean pillow and blankets (the number of beds must conform to local legal requirements)

- A chair
- Clean protective garments for use by first aid providers
- A sink with running hot and cold water
- A suitable store for first aid materials
- A range of first aid equipment (containing at least the equipment in a standard first aid box)

- Suitable, foot-operated, refuse container lined with disposable plastic bags
- A bowl
- Paper towels and soap
- Drinking water (when not available on tap) and disposable cups
- A telephone or other suitable means of communication

SUPPLIES

First aid kits must be made available in every larger department for the treatment of minor injuries. First aid kits must be kept unlocked, and the contents must contain sufficient quantities of first aid items according to the Factory’s circumstances. The following items are recommended in all first aid kits:

- A general guidance card with information on first aid and emergency telephone numbers
- Checklist of contents
- Wrapped sterile adhesive dressing
- Eye pads with attachments
- Wrapped triangular bandage
- Safety pins
- Wrapped sterile bandages
- A pair of disposable gloves
- Scissors
- Injury log and pen
- Plaster
- Disinfection liquid

DOCUMENTATION

A clinic record of the types of injuries or sicknesses that occurred in the Factory shall be made and kept for one (1) year. In case of an unusual accumulation of injuries or any serious injury or sicknesses, the causes of these injuries or sicknesses shall be investigated and corrective actions shall be taken where needed.

PROCEDURES, TRAINING, & STAFFING

- Basic first aid training shall be provided to all workers regularly.
- Clear procedures for responding to life-threatening and non-life-threatening emergencies must be in place.
- An occupational nurse or physician shall regularly visit the room. At any time during working hours (also on night shifts, if applicable), a person qualified in first aid must be present.
 - In low-risk situations, there shall be at least one (1) first aid provider present for every 50-100 employees at all times.
 - In hazardous situations, there must not be fewer than one first aid provider for every 50 employees present at all times.
- The person who is to be appointed as a first aid provider must attend adequate training conducted by a qualified organization.
- First aid providers shall be easily identifiable (through the use of badges or armbands, etc.) for ease of locating when needed.
- The names of first aid providers (with their photographs, if desired) shall be clearly displayed on notice boards.
11.6 Welfare Facilities & Sanitation

11.6.1 Sanitation & Condition of Welfare Facilities

Ensuring adequate levels of sanitation helps to promote good health and is especially important for areas where food is prepared, as well as for bathrooms and toilets. The following guidance is applied to all production, office, warehouse, and dormitory areas:

- Walls shall be clean and painted or tiled.
- The floor of working areas shall be maintained and kept dry. Platforms, mats, or other dry standing places shall be provided in places where wet processes are used.
- Drainage shall be maintained and appropriate waterproof footwear provided where needed.
- All floors, walkways, and stairs must be kept in good repair. All must be kept clear of anything that may cause a slip or trip hazard.
- Build-up of waste materials in working areas (around saw horses, cutting stations, tool boxes) is prohibited. Factories shall maintain an ongoing routine of waste disposal at regular intervals.
- Maintain adequate lighting in all work areas.
- Use waste bins, garbage cans, and dumpsters to properly dispose of waste and prevent the build-up of debris.
- Ensure that there are no protruding nails on loose or fixed materials that may snag clothing or cause an abrasion or puncture.
- Post signs and use danger or caution tape where hazards may not be readily seen.
- Ensure that all ground surfaces are firm and level before setting scaffolds or ladders.
- Aisles and exits shall be kept clear of obstructions at any time.
- Smoking or eating in production areas or toilets shall not be permitted except where exceptions are explicitly stated. A restaurant, canteen, or dining area with sufficient space shall be provided for all employees to help enforce this rule.
- Garbage and unused materials shall be regularly removed.

Figure 14: Examples of waste segregation in the workplace
11.6.2 Drinking (Potable) Water

The Factory must ensure adequate potable water, defined as suitable for drinking and food preparation, is provided at no cost for all employees at all times. The following rules apply to the provision of potable water:

- Potable water shall be provided in all places of employment for drinking, bathing, cooking, food preparation, washing of dishes and in personal service rooms. This water shall be tested annually, or in accordance with local legal requirements, to ensure it remains safe to drink.
- Drinking water dispensers shall be designed, constructed, and serviced to maintain sanitary conditions. Dispensers shall be capable of closure and equipped with a tap.
- Open containers such as barrels, pails, or tanks for drinking water that require dipping or pouring to access water are prohibited, whether or not they are fitted with a cover.
- A common drinking cup and other common utensils shared by more than one person are prohibited.
- A drinking station shall be located in a clean space with an upstream of air flow and shall not be located inside or nearby toilet areas.
- A drinking station must be located at a reasonable distance from the workstation.

![Figure 15: Example of drinking station at workplace](image)

11.6.3 Toilet Facilities

Toilet facilities must allow employees clean, private, and easy access in all parts of the Factory. The following rules apply to Factory toilets:

- Separate toilet rooms for each gender must be provided in all places of employment.
- Toilet rooms shall be distinctly marked “for men” and “for women” by signs printed in the native language of the persons occupying the building or marked with easily understood pictures or symbols. If the facilities for each sex are in the same building, they must be separated by solid walls or partitions extending from floor to ceiling to ensure adequate privacy.
- Where toilet rooms will be occupied by no more than one person at a time, the rooms must be lockable from the inside. Each toilet room must occupy a separate compartment with a door and walls or partitions between and fixtures sufficiently high (>1.7 meters high) to ensure privacy. With the exception of urinals, open toilet rooms are prohibited.
- Tightly closing waste bins shall be provided within each toilet stall for disposal of toilet paper and sanitary dressings.
- Hand drying facilities (such as paper towels, clean cloth towels, electric dryer, etc.) must be provided.
- Toilet paper must be provided to all employees.
- Sufficient hand washing facilities and hand soap shall be provided for each toilet section.
- Toilet facilities must be regularly cleaned and maintained to ensure sanitary conditions at all times.
- The number of toilets provided for each gender shall be based on the number of employees (see the below table for specifications):

<table>
<thead>
<tr>
<th>Number of Employees</th>
<th>Required Number of Toilets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>1</td>
</tr>
<tr>
<td>11-20</td>
<td>2</td>
</tr>
<tr>
<td>21-30</td>
<td>3</td>
</tr>
<tr>
<td>31-40</td>
<td>4</td>
</tr>
<tr>
<td>41-50</td>
<td>5</td>
</tr>
<tr>
<td>51-60</td>
<td>6</td>
</tr>
<tr>
<td>61-70</td>
<td>7</td>
</tr>
<tr>
<td>71-80</td>
<td>8</td>
</tr>
<tr>
<td>81-90</td>
<td>9</td>
</tr>
<tr>
<td>91-100</td>
<td>10</td>
</tr>
<tr>
<td>>100</td>
<td>11</td>
</tr>
</tbody>
</table>

![Table 16: Required number of toilets per number of employees](image)
<table>
<thead>
<tr>
<th>NUMBER OF EMPLOYEES</th>
<th>MINIMUM NUMBER OF TOILETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 15</td>
<td>1</td>
</tr>
<tr>
<td>16 - 35</td>
<td>2</td>
</tr>
<tr>
<td>36 - 55</td>
<td>3</td>
</tr>
<tr>
<td>56 - 80</td>
<td>4</td>
</tr>
<tr>
<td>81 - 110</td>
<td>5</td>
</tr>
<tr>
<td>111 – 150</td>
<td>6</td>
</tr>
<tr>
<td>Over 150</td>
<td>1 additional fixture for each additional 40 employees</td>
</tr>
</tbody>
</table>

11.6.4 Canteens and Kitchen Facilities

The following rules apply to kitchen facilities and canteens:

- In all areas where central dining operations are permitted or provided, food handling facilities must meet the requirements of all local sanitation regulations, and, where applicable, possess a valid canteen hygiene license from local authorities.
- Kitchen personnel must be checked for infectious diseases in regular intervals.
- Management shall perform a periodic canteen inspection for food hygiene and safety to prevent pest or animal infestation.
- The payment arrangement or food prices charged to employees shall be reasonable. When food is not free of charge, the price list must be displayed conspicuously.
- A refrigerator system or cold room freezer must be used and maintained at the correct temperatures.
- Samples of food cooked/served shall be kept for the length of time required by local food safety laws for testing in cases of food poisoning. In places where no local requirement is in place, PUMA requires that such samples are retained for at least 48 hours.
- Seating facilities must accommodate all employees scheduled to eat during a given shift. Those seating facilities shall offer protection from negative weather influences such as rain and excessive heat or cold.
- Feedback regarding food or service shall be collected at regular intervals.

See next page.
APPENDIX

A. The PUMA Code of Conduct

CODE OF CONDUCT

PUMA respects Human Rights. This respect defines our engagement with the societies in which we operate, and with our partners throughout our supply chain. PUMA respects the environment. We are determined to manage, reduce and report on the impact on the environment of both our organization and our supply chain.

EMPLOYMENT RELATIONSHIP

Vendors and their subcontractors shall adopt and adhere to rules and conditions of employment that respect workers, and, at a minimum, safeguard their rights under national and international labor and social security laws and regulations.

NO CHILD LABOR

Vendors and their subcontractors may not employ anyone below 15 years of age, or the local legal minimum age, or the age for completing compulsory education, whichever of the three is higher.

SAFE WORKING ENVIRONMENT

Vendors and their subcontractors must provide a safe and hygienic working environment for all employees. Vendors and their subcontractors must take all possible precautions to prevent accidents at the workplace, and should actively promote good occupational health and safety practices.

FREEDOM OF ASSOCIATION & COLLECTIVE BARGAINING

Vendors and their subcontractors must guarantee the right of their employees to join unions, or other work or industry related associations, and to bargain collectively. These rights must be given without fear of intimidation, interference or retaliation.

NO DISCRIMINATION

Vendors and their subcontractors do not discriminate against any of their employees. Employees are treated with respect and equality regardless of religion, age, gender, pregnancy, marital status, disability, nationality, race, ethnic origin, political views or sexual orientation.

ETHICAL BUSINESS PRACTICES

PUMA SE will not tolerate corruption neither in the supply chain nor in its own operations.

These two commitments are expressed publically and transparently in the PUMA Code of Conduct. All our Employees, Vendors and their Subcontractors are required to comply in full with this Code of Conduct. Where differences or conflicts arise, the highest standard shall apply.

DIGNITY AND RESPECT

Harassment, corporal punishment and physical, sexual, psychological or verbal abuse is not tolerated in the PUMA supply chain. Vendors and their subcontractors cannot use any form of forced labor including prison labor, indentured labor or bonded labor.

FAIR COMPENSATION

Every worker has a right to compensation for a regular work week that is sufficient to meet the worker’s basic needs and provide some discretionary income. Employers shall pay at least the minimum wage or the appropriate prevailing wage, whichever is higher, comply with all legal requirements on wages, and provide any other benefits required by law or contract. Where compensation does not meet workers’ basic needs and provide some discretionary income, each employer shall work with its relevant stakeholders to take appropriate actions that seek to progressively reach a level of compensation that does.

NO EXCESSIVE WORKING HOURS

Vendors and their subcontractors must not be obliged to work in excess of the regular workweek and maximum overtime allowed by local labor law. A regular workweek shall not exceed 48 hours and one day off shall be guaranteed for every seven-day period. Other than in exceptional circumstances, the sum of regular and overtime hours in a week shall not exceed 60 hours. Overtime shall be voluntary and compensated at a premium rate all be requested on a regular basis.

RESPECT THE ENVIRONMENT

Vendors and their subcontractors must respect local environmental protection legislation or International Industry standards, whichever is higher. All Vendors and their subcontractors must measure and progressively reduce their impact on the environment.

REGION	**TELEPHONE**	**LANGUAGES**
Southeast Asia | +84 980986563 | Vietnamese, English
South Asia | +880 1705669756 | Bangladeshi, English
East Asia | +86 1362884924 | Chinese, English
Americas | +503 77871132 | English, Spanish
Europe, Middle East & Africa | +49 1514073876 | German, English

Vendors and their subcontractors accept that their business practices are subject to scrutiny. All subcontractors must be authorized by PUMA and it is the responsibility of the vendor to ensure that this Code of Conduct is respected at their subcontractors.

PUMA SE reserves the right to cease trading with any company which is found to violate this Code of Conduct.

Please direct all enquiries, complaints and suggestions regarding this code and its implementation to sustain@puma.com or contact your local PUMA Sustainability Team.

V 06. 2016

Permit to Work

<table>
<thead>
<tr>
<th>Contractor/Dept.</th>
<th>Applicant:</th>
<th>Application Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area/Location:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of work:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing No.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicants Quick Reference of Hazards

- **Liquid or gas:** Work at Height, Flammable
- **Fall/ Object:** Employee, Nailed Boards or Area
- **Noise:** Earth Collapse, Inset Gas, Radioactive Materials
- **Confined Space:** Earth Collapse, High/Low Temperature
- **Pollution:** Do In Work, Other

Applicant's PPE to Be Used

<table>
<thead>
<tr>
<th>PPE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Protection</td>
<td>Hearing Protection</td>
</tr>
<tr>
<td>Safety Glasses</td>
<td>Safety Harness</td>
</tr>
</tbody>
</table>

Applicant's Measures to Be Taken at the Work Site

- Daily safety talk already held
- Equipment/tools already inspected
- No soil stack beside excavation area
- Workplace inspections recorded at each shift starting
- Workplace Surface Barriers and Isolation
- Workplace Standing Person/Watchman
- Provide Access and Egress
- Posting Warning Signs
- Fume Protection (Transportation/Stack)
- Provide Suitable Access and Egress
- Reinforcing Field Lightning
- Reinforcing Ventilation Conditions
- Electrical System to be checked and certified
- Gas Test Required
- Full/Fall Protection (Nets, Canopy, Lifeline, Scaffolds)
- Purging, Filling, Depressurizing
- Material Safety Data Sheet (MSDS)
- Medical statement available: Y N N/A

Applicant's Isolation Verification (Electrical/Mechanical)

<table>
<thead>
<tr>
<th>Electrical Isolation Completed</th>
<th>YES</th>
<th>NO</th>
<th>N4</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Isolation Completed</td>
<td>YES</td>
<td>NO</td>
<td>N4</td>
<td>Locations</td>
</tr>
<tr>
<td>Process Line Isolation Completed</td>
<td>YES</td>
<td>NO</td>
<td>N4</td>
<td>Locations</td>
</tr>
</tbody>
</table>

Risk Assessment Attached

- Applicant Acknowledgment: Job conditions (equipment items) are in safe condition for the proposed work specified in this permit.
- I will be the PTW Recipient and as the responsible person I will ensure all work is supervised by myself at all times.

Name of the involved workers

<table>
<thead>
<tr>
<th>Name of On-site Supervisor(s):</th>
</tr>
</thead>
</table>

Contractor's Operation Authority

- I will ensure the workforce under my control and comply with risk assessment (RAS). Requirements by this Permit to Work and safety methodology statement. I will guarantee the field monitoring and supervision and ensure the safe execution of this work. I will notify the Site Authority on completion or interruption of this work.

Approval by Contractor

<table>
<thead>
<tr>
<th>Contractor Operation</th>
<th>Date/Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor Safety</td>
<td>Date/Time:</td>
</tr>
<tr>
<td>Manager</td>
<td></td>
</tr>
</tbody>
</table>

On-site Special Instructions:

I have reviewed this work permit and attached document and also have physically inspected the work area with all parties. I hereby authorize to commence the work as this PTW (Permit to Work)

<table>
<thead>
<tr>
<th>Contractor PM</th>
<th>Date</th>
<th>Contractor Safety Manager</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer</td>
<td>Engineer in charge</td>
<td>Safety Engineer</td>
<td>Date</td>
</tr>
<tr>
<td>Dept.</td>
<td>Safety Manager</td>
<td>Safety Dept.</td>
<td>Date</td>
</tr>
</tbody>
</table>

Cancellation of Permit

<table>
<thead>
<tr>
<th>Applicant</th>
<th>Reason of Cancellation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ The operations covered by the permit have been completed</td>
</tr>
<tr>
<td></td>
<td>☐ A condition that is not allowed under the permit arises in or near the permit area</td>
</tr>
</tbody>
</table>

Date

- Original—Displayed at Work Site, after the work return to Safe Dept. Warning signs or other means of notification shall be posted at the entrance of each owned permit-occupied work area. After approved by Safety Dept., Applicant write on the display board of Safe Dept. for better monitoring.
C. Factory Incident Reporting Sheet

<table>
<thead>
<tr>
<th>Factory Incident Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory Name:</td>
</tr>
<tr>
<td>Date/ Time of Incident:</td>
</tr>
</tbody>
</table>

Work Related
- [] Fatality
- [] Lost Time Incident (LTI)
- [] Medical Treatment
- [] Restricted Work Case (RWC)

Non-Work Related
- [] Fatality
- [] Injury
- [] Illness
- [] Others (Please write down if the case is not under any circumstances above)

Date of Report:

Reported by:
- **Name:**
- **Title:**

Information of the Injured or Ill Person
- **Name:**
- **Job Title:**
- **Employee Number:**
- **Contact Phone:**
- **Sex:** [] M [] F
- **Department:**
- **Length of Employment:**
- **Shift:**

Information of the Event
(The event can be incident, exposure, strike, riot, social upheavels whether it impacted to the production situation)
- **Date of the event occurred:**
- **Place of Incident or Exposure:**
- **Time:**
- **Employer’s premises:** [] Yes []
- **Nature of injury/exposure (ie, sprain, strain, cut, etc.):**
- **Part of body affected:**
- **Last work days:**

Witness - Witness Report Attached

<table>
<thead>
<tr>
<th>Witness Name:</th>
<th>Date:</th>
<th>Statement Given:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Description of Incident or Strike
What was employee doing? How did the incident/strike occur? [use blank paper if more space is needed]

Draw diagram of incident. [Use blank paper or attach phone if necessary]
D. Cases of OHS Hazard Report

<table>
<thead>
<tr>
<th>NATURE OF THE INCIDENT</th>
<th>AFC</th>
<th>Fall</th>
<th>Tripped</th>
<th>Slipped</th>
<th>Struck</th>
<th>List Tools, Machinery, Chemicals, etc. involved in this injury or illness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AFC</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>The worker was trying to cut the empty chemical barrel (with ink for painting) for recycling, suddenly the explosion just happened when cutting. 2nd degree fire burn 10% at left upper limb.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AFFECTED BODY PART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
</tr>
<tr>
<td>Arm</td>
</tr>
<tr>
<td>Chest</td>
</tr>
<tr>
<td>Specified if other</td>
</tr>
<tr>
<td>Eye</td>
</tr>
<tr>
<td>Wrist</td>
</tr>
<tr>
<td>Abdomen</td>
</tr>
<tr>
<td>Shoulder</td>
</tr>
<tr>
<td>Ear</td>
</tr>
<tr>
<td>Hand</td>
</tr>
<tr>
<td>Leg</td>
</tr>
<tr>
<td>Toe</td>
</tr>
<tr>
<td>Mouth</td>
</tr>
<tr>
<td>Finger</td>
</tr>
<tr>
<td>Foot</td>
</tr>
<tr>
<td>Neck</td>
</tr>
<tr>
<td>Nose</td>
</tr>
<tr>
<td>Foot</td>
</tr>
<tr>
<td>Face</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATURE OF INJURY/ILLNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion</td>
</tr>
<tr>
<td>Trauma</td>
</tr>
<tr>
<td>Hernia</td>
</tr>
<tr>
<td>Amputation</td>
</tr>
<tr>
<td>Cut, puncture</td>
</tr>
<tr>
<td>Shock (Electrical)</td>
</tr>
<tr>
<td>Dermatitis</td>
</tr>
<tr>
<td>Burn</td>
</tr>
<tr>
<td>Contusion</td>
</tr>
<tr>
<td>Fracture</td>
</tr>
<tr>
<td>Visual</td>
</tr>
<tr>
<td>Crushing</td>
</tr>
<tr>
<td>Hearing</td>
</tr>
<tr>
<td>Sprain/Strain</td>
</tr>
<tr>
<td>Cumulative</td>
</tr>
<tr>
<td>Radiation</td>
</tr>
<tr>
<td>Multiple (Specify)</td>
</tr>
<tr>
<td>Other (Specify)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THE INJURED WAS TREATED AT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>On site First-aid box</td>
</tr>
<tr>
<td>On site clinic</td>
</tr>
<tr>
<td>Off site hospital</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUSE ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORKER</td>
</tr>
<tr>
<td>MACHINE INVOLVED</td>
</tr>
<tr>
<td>Violate SOP/Safety Rule[s]</td>
</tr>
<tr>
<td>Not Alert</td>
</tr>
<tr>
<td>Poor training or instructions</td>
</tr>
<tr>
<td>Unsafe work procedure</td>
</tr>
<tr>
<td>Horseplay</td>
</tr>
<tr>
<td>Operating Without Authority</td>
</tr>
<tr>
<td>Making Safety Device Inoperative</td>
</tr>
<tr>
<td>Failure to use Personal Protective Equipment</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Equipment Poorly Placed</td>
</tr>
<tr>
<td>Housekeeping - Dirty or Cluttered</td>
</tr>
<tr>
<td>Not Enough Working Space</td>
</tr>
<tr>
<td>Poor Lighting or Ventilation</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Machine Guards Not in use</td>
</tr>
<tr>
<td>Machine Guards Missing</td>
</tr>
<tr>
<td>Unsafe Clothing</td>
</tr>
<tr>
<td>Inadequate Guarding</td>
</tr>
<tr>
<td>Hazardous Arrangement</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Work Procedure Unsafe</td>
</tr>
<tr>
<td>Material Used Unsafe</td>
</tr>
<tr>
<td>Chemical Exposure</td>
</tr>
<tr>
<td>Other Physical Hazards</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Poorly Placed</td>
</tr>
<tr>
<td>Housekeeping - Dirty or Cluttered</td>
</tr>
<tr>
<td>Not Enough Working Space</td>
</tr>
<tr>
<td>Poor Lighting or Ventilation</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

| Other |
| Other |
| Other |
E. Contacts

If you have any questions or need additional information, please contact the PUMA Corporate Sustainability Team at:

sustainability@puma.com

or:

Mr. Stefan D. Seidel
Head of Corporate Sustainability
PUMA SE
Stefan.seidel@puma.com
Tel: +49 9132 81 0
PUMA-WAY 91074, Herzogenaurach, Germany

F. References

G. Glossary of Terms

Accident – An unplanned event considered to be unpreventable, that interrupts the completion of an activity and may (or may not) include injury or property damage.

Confined Space – A space requiring a special work permit that is large enough to enter but too small for continuous occupancy. May have limited/restricted means for entry and exit.

Contractor – A company that provides services (both physical and non-physical work) for a Factory.

Dangerous Occurrence – An unplanned event that presents a danger of injury or death.

Environmental Impact – A change in the makeup, functioning, or appearance of the environment due to the effect of certain activities. Examples include reduced crop yields, changes in water availability and increases in extreme weather due to greenhouse gas emissions.

Ergonomics – The study of human performance at work, which takes into consideration the physical and mental capabilities of the worker and how he/she interacts with tools, equipment, work methods, tasks, and the working environment. Ergonomic hazards may be mitigated through the use of risk assessments, hazard prevention, injury management, and training.

Excavation Work – Work requiring a special work permit that is conducted in a cut, cavity, trench, or depression in the earth’s surface. Work in excavation spaces requires adequate protective systems.

Extreme Temperatures – Temperature conditions that are either extreme in heat or cold that present a health risk.

Factory – (See “Employer”).

Factory Management – (See “Employer”).

Fatal Emergency – An accident leading to the death of an employee.

Fatality – Death that occurs while a person is at work or performing work related tasks.

First Aid – Emergency care that is provided to an individual for an injury or sudden illness before professional emergency medical treatment is available.

Hazard – A danger or risk.

Health Surveillance – The periodic monitoring of workers’ health through a combined assessment of medical history, an examination, and relevant tests.

Hot Work – Any process that can be a source of ignition when flammable material is present or can be a fire hazard regardless of the presence of flammable material in the workplace.

Incident – An unplanned, undesired event that hinders completion of a task and may cause injury or other damage.

Major / Critical Accident – An accident resulting on a permanent disability or illness that leaves an employee unable to return to the same job or similar tasks.

Major / Serious Accident – An accident resulting in a severe injury or illness that causes temporary disability to the employee (but allows them to return to the same job after treatment and recovery). Lost working time is more than one man-day.

Natural Disaster – A major event caused by natural processes. Examples include a flood, earthquake, tornado, typhoon, or tsunami.

‘Near Miss’ – An unplanned event that did not result in injury, illness, or damage but had the potential to do so. Near misses shall be taken as seriously as an unplanned event that did result in negative consequences.

Notifiable Accident – An Accident that needs to be reported to the local authorities. (Precise definitions of notifiable accidents may vary depending on local regulations.)

Occupational Health and Safety Management System (“OHS-MS”) – A set of procedures and practices which can help manage the OHS program by using a consistent and systematic approach. Management systems may be internally or externally certified according to accepted certifications (e.g. the standards OHSAS 18001 and ISO 45001).

Potable Water – Water that is suitable for drinking and food preparation. Also known as drinkable water.

PUMA Vendor Rating System – A supplier decision matrix to evaluate potential Core Suppliers. The system rates all Suppliers against strategic and operational parameters including the commitment of Vendor management to a PUMA partnership as evidenced by various investments and improvements.

Re-audit Timeline – A timeline for re-audit determined by the audit grade and/or year-end grade. The timeline is one (1) year for a Factory with an A, B+, or B-rating, and 4 months for a Factory with a C rating.

Red Flag Incidence – Worker or third-party complaints related to a Zero Tolerance or Critical Issue; workers’ complaints that remained unsolved after 3 months; or a media incident that remains unresolved.
Reportable Diseases – Diseases considered to be of great public health importance. Must be reported when found among employees in the workplace.

Restricted Substances List (RSL) – A list of substances subject to a usage ban.

Risk Framework – A framework to determine risk in a country based on several factors, such as audit grade, political situation, and the interval of minimum wage changes.

RSL Tests – The test to determine that a Factory does not use restricted-substance chemicals in any PUMA product.

Self-Assessment – A part in the FFC platform containing a series of questions regarding general information about the Factory that Factories must complete prior to the PUMA audit.

Special Work Permits – Required for work in areas capable of causing serious injury and/or death to employees who enters the spaces without taking proper precautionary measures. These include confined space, hot work, working at height, and excavation work.

Subcontractor – A separate company contracted by a Factory for work or that has a business relationship with a Factory.

Subsidiary – A branch of PUMA located in a country tasked with managing PUMA production order in that country. Examples include PUMA Japan, PUMA Korea, etc.

Supplier – (See “Employer”)

Supplier Audit Feedback Form – A form that must be voluntarily submitted by a Factory to the Assistant of PUMA Sustainability after a PUMA audit has been completed.

Tier 1 – All processes related to finished product assembly such as Cutting Sewing, Pressing, Washing & Finishing, Packing etc. as long as those processes are carried out by a finished goods supplier.

Tier 2 – All processes related to material or component production such as Weaving, Knitting, Fabric dyeing/Printing, Chemical/Mechanical finishing, Tanning, Midsole, Outsole, Shoebox, Labels, Zippers, etc., Also subcontracted and outsourced processes by the Tier 1 factory. However not factories who produce finished goods (as those are classified as Tier 1)

Tier 3 – All processes related to raw material production such as ginning, rubber production, production of plastic pellets, input chemistry, etc.,

Tier 4 – All processes of raw material extraction such as Growing and Harvesting of plants, Raising and Slaughtering of animals and extraction and processing of oils, minerals and chemicals.

Vendor – (See “Employer”).

Vendor Compliance Programs – Internal policies and control mechanisms that identify any potential noncompliance at an early stage and work toward remediation wherever required.

Vibration – Machinery used in the factory for production almost always exposes workers to some degree of vibration. Prolonged exposure to vibration can cause injuries over time.

Occupational Disease – Negative health outcomes caused by factors related to an employee’s work (e.g. loss of hearing due to long-term exposure to noise in the workplace).

Working at Height – Any work that takes place more than six (6) feet above the ground. Requires a special work permit.

Year-End Grading – A grade related to Factory performance in one year. The year-end grade is given after PUMA considers the latest audit rating, any Red Flag Incidences, and workers’ complaints.
H. Signage Examples

RED: PROHIBITION SIGNAGE

Fire Extinguisher/ Hose Signage to be used to indicate the location and purpose of fire extinguishers

![Figure 16: Fire extinguisher signage](image)

Fire alarm signage are to be used to indicate the location of a Fire Alarm button

![Figure 17: Fire alarm signage](image)

No smoking signage are compulsory in rooms where flammable chemicals are stored or other dangers of fire exist

![Figure 18: No smoking signage](image)

Used to remind workers that smoking or consumption of food is prohibited in a chemical storage or handling area

![Figure 19: Do not Eat or Drink or Smoke Signage](image)

YELLOW OR AMBER: WARNING SIGNAGE

Flammable chemical signs are compulsory for every area where highly flammable substances are used. Containers, bottles or receptacles used for the storage of flammable chemicals must be clearly marked.

![Figure 20: Flammable chemical signage](image)

Chemical storage signage must be used to mark the door leading to chemical storage ("do not smoke, eat or drink" signage may also be used)

![Figure 21: Chemical storage signage](image)

Hazard signage for chemicals are required to classify the danger of chemicals used or stored, and similar signage must be placed directly on the chemical containers, as well. *Note:* if one of these signs is found on the chemical(s) used (i.e. if any chemicals pose a danger from irritants, toxicity, solvents or fire), then a safety data sheet must be displayed in the area where the chemicals are used and stored, and the instructions included in those safety data sheets must be strictly adhered to.
Further Warning Signage: To be used where applicable

Figure 22: Hazard signage for Chemical

Figure 23: Further warning signage

BLUE: MANDATORY SIGNAGE

- **Fire Escape – Keep Clear Signage**

- **Fire Door – Keep Shut Signage**: To be used where a fire door was built to prevent fire from moving from one room to the other, e.g. entrance door of a chemical storage. This signage is not be confused with fire exit signage!

Figure 24: Fire escape signage

Figure 25: Fire door - keep shut signage

Personal Protective Equipment (“PPE”) Signage are used to remind the worker of the proper PPE to use in different circumstances

Figure 26: PPE signage
Further Mandatory Signage: To be used where applicable

![Further mandatory signage](image)

GREEN: EMERGENCY ESCAPES, FIRST AID SIGNAGE

Fire exit signage compulsory for every floor in every factory.

![Fire exit signage](image)

First aid signage indicate the location of first aid boxes, first aid trained persons, an emergency shower, or eye wash station.

![First Aid signage](image)

LIST OF FIGURES

- Figure 1: Three dimensions of PUMA’s Sustainability Strategy .. 8
- Figure 2: PUMA 10FOR20 Sustainability Targets ... 8
- Figure 3: PUMA rating system .. 15
- Figure 4: New rating and scoring system structure ... 16
- Figure 5: Plan Do Check Act (adapted from ISO) ... 22
- Figure 6: Flowchart PUMA Emergency Reporting Protocol ... 29
- Figure 7: Chemical storage .. 38
- Figure 8: Chemical Labelling .. 40
- Figure 9: Fire safety management system ... 42
- Figure 10: Best Practices for Using a Ladder ... 52
- Figure 11: Illustration of work-station arrangement for different work scenarios 58
- Figure 12: Five basic components of LEV ... 59
LIST OF TABLES

Table 1: Risk Assessment Process .. 24
Table 2: Risk Assessment Chart – Example .. 25
Table 3: Hazard Frequency of Exposure .. 26
Table 4: Hazard Severity Categorizations .. 26
Table 5: Risk Matrix .. 27
Table 6: Classification of Chemicals for Storage ... 38
Table 7: Fire Extinguishers Types and Applications ... 43
Table 8: Internal Safety Teams ... 45
Table 9: Safety Measures for Contract Work ... 49
Table 10: Commercial Ladder Weight Capacities ... 51
Table 11: Signage Colors ... 53
Table 12: Noise Exposure and dB(A) .. 55
Table 13: Light Recommendations ... 55
Table 14: Threshold limit values for HAV exposure ... 56
Table 15: Extreme Temperatures, Risk Levels, and Protective Measures .. 56
Table 16: Required number of toilets per number of employees .. 65

Figure 13: example of local exhaust ventilation system ... 60
Figure 14: Examples of waste segregation in the workplace ... 64
Figure 15: Example of drinking station at workplace .. 65
Figure 16: Fire extinguisher signage .. 74
Figure 17: Fire alarm signage ... 74
Figure 18: No smoking signage .. 74
Figure 19: Do not Eat or Drink or Smoke Signage ... 74
Figure 20: Flammable chemical signage .. 74
Figure 21: Chemical storage signage ... 74
Figure 22: Hazard signage for Chemical .. 75
Figure 23: Further warning signage .. 75
Figure 24: Fire escape signage ... 75
Figure 25: Fire door - keep shut signage ... 75
Figure 26: PPE signage ... 75
Figure 27: Further mandatory signage ... 76
Figure 28: Fire exit signage .. 76
Figure 29: First Aid signage .. 76